3,594 research outputs found

    An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    Get PDF
    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented

    Heterodyne Receiver for Origins

    Get PDF
    The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 ÎĽm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared /Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research

    The Distribution of Ortho-H_2D+(1_1,0 - 1_1,1) in L1544: Tracing the Deuteration Factory in Prestellar Cores

    Get PDF
    Prestellar cores are unique laboratories for studies of the chemical and physical conditions preceding star formation. We observed the prestellar core L1544 in the fundamental transition of ortho-H2D+ (1_1,0-1_1,1) at different positions over 100", and found a strong correlation between its abundance and the CO depletion factor. We also present a tentative detection of the fundamental transition of para-D2H+ (1_1,0-1_0,1) at the dust emission peak. Maps in N2H+, N2D+, HCO+ and DCO+ are used, and interpreted with the aid of a spherically symmetric chemical model that predicts the column densities and abundances of these species as a function of radius. The correlation between the observed deuterium fractionation of H3+, N2H+ and HCO+ and the observed integrated CO depletion factor across the core can be reproduced by this chemical model. In addition a simpler model is used to study the H2D+ ortho-to-para ratio. We conclude that, in order to reproduce the observed ortho-H2D+ observations, the grain radius should be larger than 0.3 microns.Comment: 24 pages, 9 figures, accepted in ApJ (to be published in July 2006

    On the behavior of micro-spheres in a hydrogen pellet target

    Full text link
    A pellet target produces micro-spheres of different materials, which are used as an internal target for nuclear and particle physics studies. We will describe the pellet hydrogen behavior by means of fluid dynamics and thermodynamics. In particular one aim is to theoretically understand the cooling effect in order to find an effective method to optimize the working conditions of a pellet target. During the droplet formation the evaporative cooling is best described by a multi-droplet diffusion-controlled model, while in vacuum, the evaporation follows the (revised) Hertz-Knudsen formula. Experimental observations compared with calculations clearly indicated the presence of supercooling, the effect of which is discussed as well.Comment: 22 pages, 8 figures (of which two are significantly compressed for easier download

    Research Proposal for an Experiment to Search for the Decay {\mu} -> eee

    Full text link
    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron, 104 page

    The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results

    Get PDF
    The unidentified TeV source in Cygnus is now confirmed by follow-up observations from 2002 with the HEGRA stereoscopic system of Cherenkov Telescopes. Using all data (1999 to 2002) we confirm this new source as steady in flux over the four years of data taking, extended with radius 6.2 arcmin (+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with photon index -1.9. It is located in the direction of the dense OB stellar association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to \~5% of the Crab assuming a Gaussian profile for the intrinsic source morphology. There is no obvious counterpart at radio, optical nor X-ray energies, leaving TeVJ2032+4130 presently unidentified. Observational parameters of this source are updated here and some astrophysical discussion is provided. Also included are upper limits for a number of other interesting sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000

    Full text link
    In this paper we present the results of simultaneous observations of the TeV blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively. The source was monitored from February 2nd to February 16th and from May 3rd to May 8th, 2000. We discuss in detail the temporal and spectral properties of the source. Remarkably, the TeV observations of February 7th/8th showed statistically significant evidence for substantial TeV flux variability on 30 min time scale. We show the results of modeling the data with a time dependent homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray emission strengths and energy spectra together with the rapid flux variability strongly suggest that the emission volume is approaching the observer with a Doppler factor of 50 or higher. The different flux variability time scales observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure
    • …
    corecore