913 research outputs found

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    A Preliminary Indication of Evolution of Type Ia Supernovae from their Risetimes

    Full text link
    We have compared the risetime for samples of nearby and high-redshift type Ia supernovae (SNe Ia). The fiducial risetime of the nearby SNe Ia is 2.5+/-0.4 days longer than the proemial risetime determined by Goldhaber (1998a,b) for high-redshift SNe Ia from the Supernova Cosmology Project. The statistical likelihood that the two samples have different fiducial risetimes is high (5.8 sigma) and indicates possible evolution between the samples of SNe Ia. We consider the likely effects of several sources of systematic error, but none of these resolves the difference in the risetimes. Currently, we cannot directly determine the impact of the apparent evolution on previous determinations of cosmological parameters.Comment: Accepted by the Astronomical Journal, 11 pages, 5 figure

    Atomistic theory of electronic and optical properties of InAs/InP self-assembled quantum dots on patterned substrates

    Full text link
    We report on a atomistic theory of electronic structure and optical properties of a single InAs quantum dot grown on InP patterned substrate. The spatial positioning of individual dots using InP nano-templates results in a quantum dot embedded in InP pyramid. The strain distribution of a quantum dot in InP pyramid is calculated using the continuum elasticity theory. The electron and valence hole single-particle states are calculated using atomistic effective-bond-orbital model with second nearest-neighbor interactions, coupled to strain via Bir-Pikus Hamiltonian. The optical properties are determined by solving many-exciton Hamiltonian for interacting electron and hole complexes using the configuration-interaction method. The effect of positioning of quantum dots using nanotemplate on their optical spectra is determined by a comparison with dots on unpatterned substrates, and with experimental results. The possibility of tuning the quantum dot properties with varying the nano-template is explored.Comment: 9 pages, 12 figure

    Doping effects on the electronic and structural properties of CoO2: An LSDA+U study

    Full text link
    A systematic LSDA+U study of doping effects on the electronic and structural properties of single layer CoO2 is presented. Undoped CoO2 is a charge transfer insulator within LSDA+U and a metal with a high density of states (DOS) at the Fermi level within LSDA. (CoO2)1.0−^{1.0-}, on the other hand, is a band insulator with a gap of 2.2 eV. Systems with fractional doping are metals if no charge orderings are present. Due to the strong interaction between the doped electron and other correlated Co d electrons, the calculated electronic structure of (CoO2)x−^{x-} depends sensitively on the doping level x. Zone center optical phonon energies are calculated under the frozen phonon approximation and are in good agreement with measured values. Softening of the EgE_g phonon at doping x ~0.25 seems to indicate a strong electron-phonon coupling in this system. Possible intemediate spin states of Co ions, Na ordering, as well as magnetic and charge orderings in this system are also discussed.Comment: 11 pages, 12 figure

    Structural phase transitions in epitaxial perovskite films

    Full text link
    Three different film systems have been systematically investigated to understand the effects of strain and substrate constraint on the phase transitions of perovskite films. In SrTiO3_3 films, the phase transition temperature TC_C was determined by monitoring the superlattice peaks associated with rotations of TiO6_6 octahedra. It is found that TC_C depends on both SrTiO3_3 film thickness and SrRuO3_3 buffer layer thickness. However, lattice parameter measurements showed no sign of the phase transitions, indicating that the tetragonality of the SrTiO3_3 unit cells was no longer a good order parameter. This signals a change in the nature of this phase transition, the internal degree of freedom is decoupled from the external degree of freedom. The phase transitions occur even without lattice relaxation through domain formation. In NdNiO3_3 thin films, it is found that the in-plane lattice parameters were clamped by the substrate, while out-of-plane lattice constant varied to accommodate the volume change across the phase transition. This shows that substrate constraint is an important parameter for epitaxial film systems, and is responsible for the suppression of external structural change in SrTiO3_3 and NdNiO3_3 films. However, in SrRuO3_3 films we observed domain formation at elevated temperature through x-ray reciprocal space mapping. This indicated that internal strain energy within films also played an important role, and may dominate in some film systems. The final strain states within epitaxial films were the result of competition between multiple mechanisms and may not be described by a single parameter.Comment: REVTeX4, 14 figure

    A Black Hole in the X-Ray Nova Velorum 1993

    Get PDF
    We have obtained 17 moderate-resolution (~2.5 A) optical spectra of the Galactic X-ray Nova Velorum 1993 in quiescence with the Keck-II telescope. The orbital period (P) is 0.285206 +/- 0.0000014 d, and the semiamplitude (K_2) is 475.4 +/- 5.9 km/s. Our derived mass function, f(M_1) = PK_2^3 /2 pi G = 3.17 +/- 0.12 M_sun, is close to the conventional absolute limiting mass for a neutron star (~ 3.0-3.2 M_sun) -- but if the orbital inclination i is less than 80 degrees (given the absences of eclipses), then M_1 is greater than 4.2-4.4 M_sun for nominal secondary-star masses of 0.5 M_sun (M0) to 0.65 M_sun (K6). The primary star is therefore almost certainly a black hole rather than a neutron star. The velocity curve of the primary from H-alpha emission has a semiamplitude (K_1) of 65.3 +/- 7.0 km/s, but with a phase offset by 237 degrees (rather than 180 degrees) from that of the secondary star. The nominal mass ratio q = M_2/M_1 = K_1/K_2 = 0.137 +/- 0.015, and hence for M_2 = 0.5-0.65 M_sun we derive M_1 = 3.64-4.74 M_sun. An adopted mass M_1 ~ 4.4 M_sun is significantly below the typical value of ~ 7 M_sun found for black holes in other low-mass X-ray binaries. Keck observations of MXB 1659-29 (V2134 Oph) in quiescence reveal a probable optical counterpart at R = 23.6 +/- 0.4 mag.Comment: 16 pages, 9 figures, added references, revised per. referee's comments Accepted for publication in August 1999 issue of PAS

    Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8+-T-cell responses

    Full text link
    The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the -NP-PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the -NP-PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the -NP-PA deletion viruses. These findings have implications for both natural infections and vaccines.<br /

    Effect of implant placement depth on the peri-implant bone defect configurations in ligature-induced peri-implantitis : an experimental study in dogs

    Get PDF
    The subcrestal placement of implant platform has been considered a key factor in the preservation of crestal bone, but the influence of implant placement depth on bone remodeling combined with peri-implantitis is not fully understood. The aim of this study was to assess the effect of the crestal or subcrestal placement of implants on peri-implant bone defects of ligature-induced peri-implantitis in dogs. Eight weeks after tooth extraction in six beagle dogs, two different types of implants (A: OsseoSpeed?, Astra, Mölndal, Sweden; B: Integra-CP?, Bicon, Boston, USA) were placed at either crestal or subcrestal (-1.5 mm) positions on one side of the mandible. Ligature-induced peri-implantitis was initiated four weeks after the installation of the healing abutment connections. After 12 weeks, tissue biopsies were processed for histological analyses. Supra-alveolar bone loss combined with a shallow infrabony defect was observed in crestal level implants while deep and wide infrabony defects were present in subcrestal level groups. Subcrestal groups showed significantly greater ridge loss, depths and widths of infrabony defects when compared to crestal groups (P<0.001). Within the limitations of the animal study, it can be stated that the implants at subcrestal position displayed greater infra-osseous defect than implants at crestal position under an experimental ligature-induced peri-implantitis

    Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots

    Full text link
    We report significant deviations from the usual quadratic dependence of the ground state interband transition energy on applied electric fields in InAs/GaAs self-assembled quantum dots. In particular, we show that conventional second-order perturbation theory fails to correctly describe the Stark shift for electric field below F=10F = 10 kV/cm in high dots. Eight-band k⋅p{\bf k}\cdot{\bf p} calculations demonstrate this effect is predominantly due to the three-dimensional strain field distribution which for various dot shapes and stoichiometric compositions drastically affects the hole ground state. Our conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure
    • 

    corecore