18,201 research outputs found

    Approximate density-effect correction for the ionization loss of charged particles

    Get PDF
    Approximate density-effect correction for ionization loss of charged particle

    An estimate of the prompt photon spectrum arising from cosmic-ray bombardment of the moon

    Get PDF
    Calculation method for estimating photon leakage spectrum arising from cosmic ray bombardment of moo

    Investigation of an all-movable control surface at a mach number of 6.86 for possible flutter

    Get PDF
    Movable tail surface for aircraft control without flutter using X-15 scale model at hypersonic spee

    Monte Carlo calculations of high energy nucleon meson cascades and applications to galactic cosmic ray transport

    Get PDF
    Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given

    Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers

    Get PDF
    Space gravitational wave detectors employing laser interferometry between free-flying spacecraft differ in many ways from their laboratory counterparts. Among these differences is the fact that, in space, the end-masses will be moving relative to each other. This creates a problem by inducing a Doppler shift between the incoming and outgoing frequencies. The resulting beat frequency is so high that its phase cannot be read to sufficient accuracy when referenced to state-of-the-art space-qualified clocks. This is the problem that is addressed in this paper. We introduce a set of time-domain algorithms in which the effects of clock jitter are exactly canceled. The method employs the two-color laser approach that has been previously proposed, but avoids the singularities that arise in the previous frequency-domain algorithms. In addition, several practical aspects of the laser and clock noise cancellation schemes are addressed.Comment: 20 pages, 5 figure

    Lidar as a Shoreline Mapping Tool

    Get PDF

    TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors

    Full text link
    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time-varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time-shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays and study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as Time-Delay Interferometric Ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times 104\sim 10^4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated inter-spacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the \textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure

    Theory of water and charged liquid bridges

    Full text link
    The phenomena of liquid bridge formation due to an applied electric field is investigated. A new solution for the charged catenary is presented which allows to determine the static and dynamical stability conditions where charged liquid bridges are possible. The creeping height, the bridge radius and length as well as the shape of the bridge is calculated showing an asymmetric profile in agreement with observations. The flow profile is calculated from the Navier Stokes equation leading to a mean velocity which combines charge transport with neutral mass flow and which describes recent experiments on water bridges.Comment: 10 pages 12 figures, misprints corrected, assumptions more transparen

    Detection of a Third Planet in the HD 74156 System Using the Hobby-Eberly Telescope

    Full text link
    We report the discovery of a third planetary mass companion to the G0 star HD 74156. High precision radial velocity measurements made with the Hobby-Eberly Telescope aided the detection of this object. The best fit triple Keplerian model to all the available velocity data yields an orbital period of 347 days and minimum mass of 0.4 M_Jup for the new planet. We determine revised orbital periods of 51.7 and 2477 days, and minimum masses of 1.9 and 8.0 M_Jup respectively for the previously known planets. Preliminary calculations indicate that the derived orbits are stable, although all three planets have significant orbital eccentricities (e = 0.64, 0.43, and 0.25). With our detection, HD 74156 becomes the eighth normal star known to host three or more planets. Further study of this system's dynamical characteristics will likely give important insight to planet formation and evolutionary processes.Comment: 24 pages, 4 tables, 6 figures. Accepted for publication in ApJ. V2 fixed table 4 page overrun. V3 added reference
    corecore