179 research outputs found

    Non-equilibrium melting processes of silicate melts with different silica content at low-temperature plasma

    Get PDF
    This article is devoted to research the possibility of high-temperature silicate melts producing from different silica content at low-temperature plasma taking into account non-equilibrium melting processes

    Joule heating effects on quartz particle melting in high-temperature silicate melt

    Get PDF
    This work is mostly focused on the melting process model simulation of quartz particles having the radius within the range of 10{-6}-10{-3} m. The melting process is simulated accounting for the heat generation at an electric current passage through a quartz particle

    Joule heating effects on quartz particle melting in high-temperature silicate melt

    Get PDF
    This work is mostly focused on the melting process model simulation of quartz particles having the radius within the range of 10{-6}-10{-3} m. The melting process is simulated accounting for the heat generation at an electric current passage through a quartz particle

    Non-equilibrium melting processes of silicate melts with different silica content at low-temperature plasma

    Get PDF
    This article is devoted to research the possibility of high-temperature silicate melts producing from different silica content at low-temperature plasma taking into account non-equilibrium melting processes

    Dissipative Van der Waals interaction between a small particle and a metal surface

    Full text link
    We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    On the very high energy (>25GeV) pulsed emission in the Crab pulsar

    Full text link
    We have examined the recently detected very high energy (VHE) pulsed radiation from the Crab pulsar. According to the observational evidence, the observed emission (>25GeV) peaks at the same phase with the optical spectrum. Considering the cyclotron instability, we show that the pitch angle becomes non-vanishing leading to the efficient synchrotron mechanism near the light cylinder surface. The corresponding spectral index of the emission equals -1/2. By studying the inverse Compton scattering and the curvature radiation, it is argued that the aforementioned mechanisms do not contribute to the VHE radiation detected by MAGIC.Comment: 11 pages, 1 figur

    Quantum field theory of the van der Waals friction

    Get PDF
    The van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is reconsidered on the basis of thermal quantum field theory in the Matsubara formulation. The calculation of the friction to linear order in the sliding velocity is reduced to the finding of the equilibrium Green functions. Thus this approach cab be extended for bodsies with complex geometry. The friction calculated in this approach agrees with the friction calculated using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation therem. We show that the van der Waals fricxtion can be measured in non-contact friction experiment using state-of-the art equipment

    Radiative heat transfer between nanostructures

    Get PDF
    We simplify the formalism of Polder and Van Hove [Phys.Rev.B {\bf 4}, 3303(1971)], which was developed to calculate the heat transfer between macroscopic and nanoscale bodies of arbitrary shape, dispersive and adsorptive dielectric properties. In the non-retarded limit, at small distances between the bodies, the problem is reduced to the solution of an electrostatic problem. We apply the formalism to the study of the heat transfer between: (a) two parallel semi-infinite bodies, (b) a semi-infinite body and a spherical body, and (c) that two spherical bodies. We consider the dependence of the heat transfer on the temperature TT, the shape and the separation dd. We determine when retardation effects become important.Comment: 11 pages, 5 figure

    Plasma technologies application for building materials surface modification

    Get PDF
    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material

    Fly ash particles spheroidization using low temperature plasma energy

    Get PDF
    The paper presents the investigations on producing spherical particles 65-110 [mu]m in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO[2]; 20.61 wt.% Al[2]O[3] and 17.55 wt.% Fe[2]O[3] phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O[2]Si, phase, increase of O[22]Al[20] and Fe[2]O[3] phases and change in Al, O density of O[22]Al[20] chemical unit cell
    • …
    corecore