9,652 research outputs found
Classical and Quantum Ensembles via Multiresolution. II. Wigner Ensembles
We present the application of the variational-wavelet analysis to the
analysis of quantum ensembles in Wigner framework. (Naive) deformation
quantization, the multiresolution representations and the variational approach
are the key points. We construct the solutions of Wigner-like equations via the
multiscale expansions in the generalized coherent states or high-localized
nonlinear eigenmodes in the base of the compactly supported wavelets and the
wavelet packets. We demonstrate the appearance of (stable) localized patterns
(waveletons) and consider entanglement and decoherence as possible
applications.Comment: 5 pages, 2 figures, espcrc2.sty, Presented at IX International
Workshop on Advanced Computing and Analysis Techniques in Physics Research,
Section III "Simulations and Computations in Theoretical Physics and
Phenomenology", ACAT 2003, December, 2003, KEK, Tsukub
The Affine Structure of Gravitational Theories: Symplectic Groups and Geometry
We give a geometrical description of gravitational theories from the
viewpoint of symmetries and affine structure. We show how gravity, considered
as a gauge theory, can be consistently achieved by the nonlinear realization of
the conformal-affine group in an indirect manner: due the partial isomorphism
between and the centrally extended ,
we perform a nonlinear realization of the centrally extended (CE) in its semi-simple version. In particular, starting from the bundle
structure of gravity, we derive the conformal-affine Lie algebra and then, by
the non-linear realization, we define the coset field transformations, the
Cartan forms and the inverse Higgs constraints. Finally we discuss the
geometrical Lagrangians where all the information on matter fields and their
interactions can be contained.Comment: 21 pages. arXiv admin note: text overlap with arXiv:0910.2881,
arXiv:0705.460
"Magic" numbers in Smale's 7th problem
Smale's 7-th problem concerns N-point configurations on the 2-dim sphere
which minimize the logarithmic pair-energy V_0(r) = -ln r averaged over the
pairs in a configuration; here, r is the chordal distance between the points
forming a pair. More generally, V_0(r) may be replaced by the standardized
Riesz pair-energy V_s(r)= (r^{-s} -1)/s, which becomes - ln r in the limit s to
0, and the sphere may be replaced by other compact manifolds. This paper
inquires into the concavity of the map from the integers N>1 into the minimal
average standardized Riesz pair-energies v_s(N) of the N-point configurations
on the 2-sphere for various real s. It is known that v_s(N) is strictly
increasing for each real s, and for s<2 also bounded above, hence "overall
concave." It is (easily) proved that v_{-2}(N) is even locally strictly
concave, and that so is v_s(2n) for s<-2. By analyzing computer-experimental
data of putatively minimal average Riesz pair-energies v_s^x(N) for s in
{-1,0,1,2,3} and N in {2,...,200}, it is found that {v}_{-1}^x(N) is locally
strictly concave, while v_s^x(N) is not always locally strictly concave for s
in {0,1,2,3}: concavity defects occur whenever N in C^{x}_+(s) (an s-specific
empirical set of integers). It is found that the empirical map C^{x}_+(s), with
s in {-2,-1,0,1,2,3}, is set-theoretically increasing; moreover, the percentage
of odd numbers in C^{x}_+(s), s in {0,1,2,3}, is found to increase with s. The
integers in C^{x}_+(0) are few and far between, forming a curious sequence of
numbers, reminiscent of the "magic numbers" in nuclear physics. It is
conjectured that the "magic numbers" in Smale's 7-th problem are associated
with optimally symmetric optimal-energy configurations.Comment: 109 pages, of which 30 are numerical data tables. Thoroughly revised
version, to appear in J. Stat. Phys. under the different title: `Optimal N
point configurations on the sphere: "Magic" numbers and Smale's 7th problem
A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity
MOTIVATION: Unravelling the rules underlying protein-protein and protein-ligand interactions is a crucial step in understanding cell machinery. Peptide recognition modules (PRMs) are globular protein domains which focus their binding targets on short protein sequences and play a key role in the frame of protein-protein interactions. High-throughput techniques permit the whole proteome scanning of each domain, but they are characterized by a high incidence of false positives. In this context, there is a pressing need for the development of in silico experiments to validate experimental results and of computational tools for the inference of domain-peptide interactions. RESULTS: We focused on the SH3 domain family and developed a machine-learning approach for inferring interaction specificity. SH3 domains are well-studied PRMs which typically bind proline-rich short sequences characterized by the PxxP consensus. The binding information is known to be held in the conformation of the domain surface and in the short sequence of the peptide. Our method relies on interaction data from high-throughput techniques and benefits from the integration of sequence and structure data of the interacting partners. Here, we propose a novel encoding technique aimed at representing binding information on the basis of the domain-peptide contact residues in complexes of known structure. Remarkably, the new encoding requires few variables to represent an interaction, thus avoiding the 'curse of dimension'. Our results display an accuracy >90% in detecting new binders of known SH3 domains, thus outperforming neural models on standard binary encodings, profile methods and recent statistical predictors. The method, moreover, shows a generalization capability, inferring specificity of unknown SH3 domains displaying some degree of similarity with the known data
The nature and evolution of Nova Cygni 2006
AIMS: Nova Cyg 2006 has been intensively observed throughout its full
outburst. We investigate the energetics and evolution of the central source and
of the expanding ejecta, their chemical abundances and ionization structure,
and the formation of dust. METHOD: We recorded low, medium, and/or
high-resolution spectra (calibrated into accurate absolute fluxes) on 39
nights, along with 2353 photometric UBVRcIc measures on 313 nights, and
complemented them with IR data from the literature. RESULTS: The nova displayed
initially the normal photometric and spectroscopic evolution of a fast nova of
the FeII-type. Pre-maximum, principal, diffuse-enhanced, and Orion absorption
systems developed in a normal way. After the initial outburst, the nova
progressively slowed its fading pace until the decline reversed and a second
maximum was reached (eight months later), accompanied by large spectroscopic
changes. Following the rapid decline from second maximum, the nova finally
entered the nebular phase and formed optically thin dust. We computed the
amount of formed dust and performed a photo-ionization analysis of the
emission-line spectrum during the nebular phase, which showed a strong
enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement
with theoretical predictions for the estimated 1.0 Msun white dwarf in Nova Cyg
2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are
discussed.Comment: in press in Astronomy and Astrophysic
Light Ions Response of Silicon Carbide Detectors
Silicon carbide (SiC) Schottky diodes 21 mum thick with small surfaces and
high N-dopant concentration have been used to detect alpha particles and low
energy light ions. In particular 12C and 16O beams at incident energies between
5 and 18 MeV were used. The diode active-region depletion-thickness, the
linearity of the response, energy resolution and signal rise-time were measured
for different values of the applied reverse bias. Moreover the radiation damage
on SiC diodes irradiated with 53 MeV 16O beam has been explored. The data show
that SiC material is radiation harder than silicon but at least one order of
magnitude less hard than epitaxial silicon diodes. An inversion in the signal
was found at a fluence of 10^15 ions/cm^2.Comment: 20 pages, 16 figures, submitted for publication to Nuclear
Instruments and Methods in Physics Research
Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps
The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d’Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification’s accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified
A neural strategy for the inference of SH3 domain-peptide interaction specificity
The SH3 domain family is one of the most representative and widely studied cases of so-called Peptide Recognition Modules (PRM). The polyproline II motif PxxP that generally characterizes its ligands does not reflect the complex interaction spectrum of the over 1500 different SH3 domains, and the requirement of a more refined knowledge of their specificity implies the setting up of appropriate experimental and theoretical strategies. Due to the limitations of the current technology for peptide synthesis, several experimental high-throughput approaches have been devised to elucidate protein-protein interaction mechanisms. Such approaches can rely on and take advantage of computational techniques, such as regular expressions or position specific scoring matrices (PSSMs) to pre-process entire proteomes in the search for putative SH3 targets. In this regard, a reliable inference methodology to be used for reducing the sequence space of putative binding peptides represents a valuable support for molecular and cellular biologists
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
The CMS RPC gas gain monitoring system: an overview and preliminary results
The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the
Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported
on. The GGM system is a cosmic ray telescope based on small RPC detectors
operated with the same gas mixture used by the CMS RPC system. The GGM gain and
efficiency are continuously monitored on-line, thus providing a fast and
accurate determination of any shift in working point conditions. The
construction details and the first result of GGM commissioning are described.Comment: 8 pages, 9 figures, uses lnfprepCMS.sty, presented by L. Benussi at
RPC07, Mumbai, INDIA 200
- …
