349 research outputs found

    PHOTON BEAMLINE CONTROL SYSTEM AS A PRODUCT

    Get PDF
    Abstract Every beamline is different, which makes it impossible to buy a control system off the shelf. Nevertheless well tested and customizable building blocks can be prepared, which are then put together according to customer requirements. Delivering a fully operational control system is not just software development, but also gathering specifications, writing documentation, testing the hardware and trimming the software on site. Based on the delivery of a number of working beamline control systems, this paper will prove that we have optimized all stages and can guarantee that the purchased control system will be delivered on time, will work according to specifications and will be properly documented. The customers can also count on support

    Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study

    Get PDF
    Item does not contain fulltextReliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant

    How I treat splenomegaly in myelofibrosis

    Get PDF
    Symptomatic splenomegaly, a frequent manifestation of myelofibrosis (MF), represents a therapeutic challenge. It is frequently accompanied by constitutional symptoms and by anemia or other cytopenias, which make treatment difficult, as the latter are often worsened by most current therapies. Cytoreductive treatment, usually hydroxyurea, is the first-line therapy, being effective in around 40% of the patients, although the effect is often short lived. The immunomodulatory drugs, such as thalidomide or lenalidomide, rarely show a substantial activity in reducing the splenomegaly. Splenectomy can be considered in patients refractory to drug treatment, but the procedure involves substantial morbidity as well as a certain mortality risk and, therefore, patient selection is important. For patients not eligible for splenectomy, transient relief of the symptoms can be obtained with local radiotherapy that, in turn, can induce severe and long-lasting cytopenias. Allogeneic hemopoietic stem cell transplantation is the only treatment with the potential for curing MF but, due to its associated morbidity and mortality, is usually restricted to a minority of patients with poor risk features. A new class of drugs, the JAK2 inhibitors, although also palliative, are promising in the splenomegaly of MF and will probably change the therapeutic algorithm of this disease

    Effect of intraperitoneally administered recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) on the cytotoxic potential of murine peritoneal cells

    Get PDF
    We studied the effect of recombinant murine granulocyte–macrophage colony-stimulating factor(rmGM-CSF) on the cytotoxic potential of murine peritoneal cells. Mice received rmGM-CSF intraperitoneally using different dosages and injection schemes. At different time points after the last injection, mice were sacrificed, peritoneal cells isolated and their tumour cytotoxicity was determined by a cytotoxicity assay using syngeneic [methyl-3H]thymidine-labelled colon carcinoma cells. Also, the cytotoxic response to a subsequent in vitro stimulation with lipopolysaccharide was determined. Upon daily injection of 6000–54 000 U rmGM-CSF over a 6-day period, the number of peritoneal cells increased over ten fold with the highest rmGM-CSF dose. Increases in cell numbers was mainly due to increases in macrophage numbers. Upon injection of three doses of 3000 U rmGM-CSF per day for 3 consecutive days, the number of macrophages remained elevated for minimally 6 days. Although the peritoneal cells from rmGM-CSF-treated mice were not activated to a tumoricidal state, they could be activated to high levels of cytotoxicity with an additional in vitro stimulation of lipopolysaccharide. Resident cells isolated from control mice could be activated only to low levels of tumour cytotoxicity with lipopolysaccharide. Tumour cytotoxicity strongly correlated with nitric oxide secretion. When inhibiting nitric oxide synthase, tumour cell lysis decreased. Thus, the expanded peritoneal cell population induced by multiple injections of rmGM-CSF has a strong tumour cytotoxic potential and might provide a favourable condition for immunotherapeutic treatment of peritoneal neoplasms. © 1999 Cancer Research Campaig

    Interleukin-2 gene transfer into human transitional cell carcinoma of the urinary bladder

    Get PDF
    Transitional cell carcinoma of the bladder is one of the human cancers most responsive to immunotherapy, and local interleukin-2 (IL-2) production appears to be an important requirement for immunotherapy to be effective. In this study, we engineered two human bladder cancer cell lines (RT112 and EJ) to constitutively release human IL-2 by retroviral vector-mediated gene transfer. Following infection and selection, stable and consistent production of biologically active IL-2 was demonstrated at both the mRNA and the protein level. Morphology, in vitro growth rate and proliferation, as well as other cytokine gene mRNA or membrane adhesion receptor expression, were not altered in IL-2 transduced cells as compared to their parental or control vector-infected counterparts. Moreover, IL-2 engineered cells lost their tumorigenicity into nu/nu mice and the mechanism of rejection appeared to involve multiple host effector cell populations, among which a prominent role was played by neutrophils and radiosensitive cells. These findings may offer support to the development of an IL-2-based gene therapy approach to human bladder cancer. 1999 Cancer Research Campaig
    corecore