
DISTRIBUTED COMPONENTS IN CONTROLS

M. Plesko, B. Jeram, I. Kriznar, B. Lesjak, T. Milharcic, R. Sabjan, G. Tkacik,
I. Verstovsek, K. Zagar; J. Stefan Institute, Ljubljana, Slovenia, http://kgb.ijs.si

Abstract

We have built a control system framework that uses
and extends modern component-based, distributed
computing and object-oriented concepts. The basic
entities of the system are accelerator devices that are
represented as CORBA objects. Each device is further
composed of property objects that correspond to what is
called channels in EPICS. Properties support get/set
commands, event-driven monitors and alarms,
asynchronous and synchronous communication, logging,
access to the database, etc. As all devices and their
properties have common functionality, the servers for
those CORBA objects are generated with a wizard-like
program generator. Another generator creates one Java
Bean component for each CORBA object. The client
applications, written in Java, are then composed of those
"accelerator components" in any commercial
development tool, often using visual and graphical
programming. The Beans are essentially components
wrapped around CORBA, because standard CORBA
components do not exist as yet. However, they are more
powerful as they contain a pluggable interface that
connects to any communication framework apart from
CORBA, such as CDEV or even a generic simulation of
devices and properties. The plugs are determined and
switched at run-time. Generic applications that cover all
basic needs including machine physics applications have
been made using CORBA dynamic invocation and Java
reflection. The functionality of the system is rounded up
by a series of tools based on a remote management
framework, which is composed of security/authorization
mechanisms, object and process management,
configuration database versioning and rollback, control
event logging, and similar.

1 INTRODUCTION
The presented distributed component framework forms

the core of the control system for the light source ANKA
at the Forschungszentrum Karlsruhe in Germany. The
2.5 GeV storage ring of ANKA is just being
commissioned and should be operational by spring 2000.
The ANKA control system[1], which is completely
outsourced to the J. Stefan Institute, builds on the three-
tier standard model architecture. Modern products based
on standards in distributed objects and networking are
applied in addition to low-cost hardware including PCs.
The LonWorks field bus network with intelligent nodes

and standard I/O modules connect the individual devices
directly to PCs. The communication to these “device
server” PCs is done through CORBA[2]. Other PCs on
the net run Java clients that wrap CORBA objects into
Java Beans[3], which are then connected with
commercial data-manipulation and visualisation Beans
using visual tools or programmatically. The CORBA
objects and Java Beans are generic models of controlled
data that can be used at any other control system.

2 OBJECT ORIENTED COMPONENTS

2.1 Concepts

A crude definition of software component is “a
reusable piece of code”. However, such a product
developed for the in-house use has little chance of being
adapted for general use and re-use even if it is free and
efficient, unless it fulfils the following conditions:
• it is easy to use, which includes being easy to learn
• it employs standard programming practices and

adheres to well-defined and established frameworks
• it is flexible in the sense of being easily ported,

adapted or extended
Some of these requirements are satisfied automatically

by the object-oriented programming (OOP) practice.
Ease of use, however, necessitates another step, that is
the use of component technology (OOP that uses existing
component frameworks and sticks to certain design
guidelines / patterns).

Our components - Accelerator Beans or Abeans[3] for
short - for rapid application development of accelerator
control client software meet these requirements by:
• using Java Beans technology, thus enabling the user

to build the panels visually, while the development
environment generates the code

• enforcing strict separation between components that
have no visual representation but represent the
communication, error handling, synchronisation and
similar frameworks; and components that offer
strictly visual capabilities but are not aware of the
fact that remote objects are being controlled through
them

• separating the communication system dependent
functionality into separate modules, called plugs,
which can be dynamically loaded: porting Abeans
consequently requires only the plug (interface to the
underlying control system) to be written, while all

International Conference on Accelerator and Large Experimental Physics Control Systems

541

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


upper layers (frameworks, visual components and
applications) remain totally unaffected.

2.2 Component Hierarchy

When writing a client application the programmer is
most often confronted with numerous problems from the
areas of error handling, timeout handling, logging,
communication system details, resource initialisation and
destruction and the like. In terms of lines of code it can
easily happen that such functionality easily compares
with the core application functionality. The same
reasoning applies to GUI programming. A divide-and-
conquer solution that ANKA client software embraces is
the use of the following approaches:

• Control system is comprised of server layers and
client layers; the latter consist of framework
(invisible) Abeans layer (which in turn consists of
server-dependent or pluggable layer and independent
layer), and application (visible) layer

• There can be many types of controlled devices and
therefore many different interfaces (one device - one
class approach), however, each device is constructed
of fundamental building blocks - Properties, and
there is only a small number of these
(RWDoubleProperty represents a physical quantity
of double type that can be either changed or
retrieved, for instance a current in a power supply;
there are currently 3 such types in ANKA CS:
RWDoubleProperty, RODoubleProperty,
ROPatternProperty, representing a retrievable bit-
pattern)

• The core visual components (such as gauges, status
displays, trend charts) should be completely
independent of the actual control system, so that they
can be used by others

• Special adapters have intimate knowledge about the
Property and about the visual component, allowing a
generic visual component to be "adapted" to the
Property. This means that the Property will be an
invisible framework class and the generic visual
component will, with the help of an adapter, become
its view (to use the Model-Controller-View
terminology).

In this way, the learning curve for a new programmer
is not very steep and demanding. For instance, ANKA
control system uses CORBA for communication, but
programmers writing the visual components or "views"
are completely unaware of CORBA, since the invisible
Abeans layer hides it. All interactions with the data
sources that the view needs to display its data is
performed through simple and well-defined Java Beans
interfaces.

The pluggable layer offers the possibility of accessing
different remote systems and by its nature of adapting the
lower-level remote system interface to the Abean

interface enforces uniform and consistent behaviour
across a range of possible remote systems.

3 CORBA OBJECTS
We believe that the most human-oriented way is to

represent each accelerator device with a respective object.
CORBA allows very fine-grained definition of objects
and their properties. With a control system we control
accelerator devices, such as power supplies, beam
position monitors, etc. So it is natural that we represent
those devices in the computer with objects. In the
network, they become CORBA objects.

The example analysis of a power supply in Table 1
shows how a device object looks and what kind of
properties it has.

Table 1: properties and commands of a power supply:

Property Type Access
ADC: double Read only
DAC: double Read/write
Status bits Read only
Command Input type Return value
on(): none void
off(): none void

We see that properties have different types and also
differ in whether they are read-only or also can be
written to. But there is more to properties. A property,
such as power supply current, has properties of its own: a
minimum, a maximum, a description, units, etc. To
avoid confusion, the properties of properties are called
characteristics.

In most cases, all properties have the same type of
characteristics. There is a difference between read-only
and read-write properties, as the former have no
command to write. Another difference is between
properties of type double and type bits (actually an
unsigned integer containing a bit pattern), as the latter
have no minimum or maximum. But all these differences
can be systematized into a matrix of few classes[2].

4 THE IMPLEMENTATION
Although the control system is designed to support all

primitive data types for controlled values, only double
and unsigned integer did suffice. In turn, the number of
necessary GUI components is small. Not only were the
types of values limited, also their properties were defined
and fixed in advance. This means that a controlled value
is either read-write or read-only and that it has a name, a
minimum, a maximum, etc.

4.1 Generators

The list of properties was made large and configurable
enough to cover .all cases, yet the sole fact that it is fixed

542



in advanced simplified the design of clients and servers
and databases.

Also the device servers and the API are then device
specific, however due to the pre-defined value types and
structures, all those components can be built easily and
fast. In fact, a wizard has been written which generated
device servers based on device interface definitions. The
Java API libraries, JavaBeans, need less than one page of
extra code per device. So in total, the concept proved to
be advantageous.

4.2 System Management

The functionality of the implemented object
management would shortly be described as:
A: view current state of control system
• state of Device Servers
• name of computer, where Device Server is running
• shows exported and exportable Devices of each

Device Server
• state of Devices
B: management of Device Servers
• download component database to local disc where

Device Server is located
• change of component database location
• shutdown, restart
C: management of individual Devices
• destroy, export of Device with DeviceServer
• activate, deactivate
• show and manage all clients connected to Device

4.3 The Component Database

The component database stores hierarchically
organized data. Data may be in form of simple type, such
as String, Double, Integer, or organized in arrays or
objects. Data are stored in text files (*.txt) that are placed
in structure of folders. The path to each piece of data
consists of directory path, name of file and it's
declaration in file. The files may be edited manually with
text editor, such as Notepad. The data stored are physical
characteristics of accelerator devices and properties
needed to communicate with devices. This data is static,
it doesn't change much, except when new devices are
added or old removed. Therefore the component database
is also called staticDB. The database is located on local
computer, where device servers are running.

A device server reads data from StaticDB in form of
attributes. An attribute consists of path name and value.
The value of an attribute can have data type, simple or
complex as Array or Object. The path name is
description of location in StaticDB architecture where
value is stored.

Expressions and variables can be used for Integer and
Double type. Supported operations are: +, -, *, /, ^, sin(),
cos(), sqrt() and exp(). Variables are all names of values
defined in the same file. In language of paths this means

that as a variable in an expression any node name can be
used that has the same parent node as the evaluated node.

Templates are used when a group of attributes has
same data value or to provide them a default value. In
such case is wise to store this value in one place, so only
one rending is necessary when value should be changed.
Templates also ease StaticDB managing and building.
When StaticDB can't find an attribute value in the given
path, it will look into template locations that are defined
inside the attribute paths. There can be more then one
template location.

For version control of the database Microsoft Visual
SourceSafe is used. The central version of StaticDB is
stored as a SourceSafe database on one computer in the
local Microsoft network. The recommended tool for
editing files is TextViewer (Textview.exe) which is
included in NT Resource Kit. On the left side of the
program window is a visible structure of folders and files
in StaticDB, on the right is the visible contents of
selected file. For Reading and comparing StaticDB two
tools are provided: DBReader reads single attributes
from StaticDB; DBCompare analyzes the whole
StaticDB and prints out selected attributes, all attributes
or all unreadable attributes. DBCompare also compares
one StaticDB to another.

CONCLUSIONS
Experiences with the running system for the ANKA

light source show that the concept lives to its promises. A
successful port of the Java Beans to a test case at the
Swiss Light Source, where the calls to CORBA were
replaced with calls to CDEV, is a proof that the strict
object oriented model of devices can be used to
effectively hide other types of communication channels.

The Abeans present the final user with a view of the
accelerator as a collection of accelerator beans, thereby
reducing the problem of writing applications for the
control system to the problem of familiarizing oneself
with the ways to use java beans and development tools.

All interfaces that Abeans expose are type-safe (with
no 'single function taking control string' methods) and
enable one to construct a simple yet powerful graphic
application within minutes.

REFERENCES
[1] M. Plesko et al, A Control System Based on Web,

Java, CORBA and Fieldbus Technologies,
PCaPAC99 workshop, Tsukuba, January 1999.

[2] M. Plesko, Implementing Distributed Controlled
Objects with CORBA, PCaPAC99 workshop,
Tsukuba, January 1999.

[3] G. Tkacik, Java Beans of Accelerator Devices for
Rapid Application Development, PCaPAC99
workshop, Tsukuba, January 1999.

543


