714 research outputs found
Quantitative measurement of orbital angular momentum in electron microscopy
Electron vortex beams have been predicted to enable atomic scale magnetic
information measurement, via transfer of orbital angular momentum. Research so
far has focussed on developing production techniques and applications of these
beams. However, methods to measure the outgoing orbital angular momentum
distribution are also a crucial requirement towards this goal. Here, we use a
method to obtain the orbital angular momentum decomposition of an electron
beam, using a multi-pinhole interferometer. We demonstrate both its ability to
accurately measure orbital angular momentum distribution, and its experimental
limitations when used in a transmission electron microscope.Comment: 6 pages, 5 figure
Symmetry-constrained electron vortex propagation
Electron vortex beams hold great promise for development in transmission
electron microscopy, but have yet to be widely adopted. This is partly due to
the complex set of interactions that occur between a beam carrying orbital
angular momentum (OAM) and a sample. Herein, the system is simplified to focus
on the interaction between geometrical symmetries, OAM and topology. We present
multiple simulations, alongside experimental data to study the behaviour of a
variety of electron vortex beams after interacting with apertures of different
symmetries, and investigate the effect on their OAM and vortex structure, both
in the far-field and under free-space propagation.Comment: 11 page
Atomic resolution mapping of phonon excitations in STEM-EELS experiments
Atomically resolved electron energy-loss spectroscopy experiments are
commonplace in modern aberrationcorrected transmission electron microscopes.
Energy resolution has also been increasing steadily with the continuous
improvement of electron monochromators. Electronic excitations however are
known to be delocalised due to the long range interaction of the charged
accelerated electrons with the electrons in a sample. This has made several
scientists question the value of combined high spatial and energy resolution
for mapping interband transitions and possibly phonon excitation in crystals.
In this paper we demonstrate experimentally that atomic resolution information
is indeed available at very low energy losses around 100 meV expressed as a
modulation of the broadening of the zero loss peak. Careful data analysis
allows us to get a glimpse of what are likely phonon excitations with both an
energy loss and gain part. These experiments confirm recent theoretical
predictions on the strong localisation of phonon excitations as opposed to
electronic excitations and show that a combination of atomic resolution and
recent developments in increased energy resolution will offer great benefit for
mapping phonon modes in real space
Exploiting lens aberrations to create electron vortex beams
A model for a new electron vortex beam production method is proposed and
experimentally demonstrated. The technique calls on the controlled manipulation
of the degrees of freedom of the lens aberrations to achieve a helical phase
front. These degrees of freedom are accessible by using the corrector lenses of
a transmission electron microscope. The vortex beam is produced through a
particular alignment of these lenses into a specifically designed astigmatic
state and applying an annular aperture in the condensor plane. Experimental
results are found to be in good agreement with simulations.Comment: 5 pages, 4 figure
Electronically coupled complementary interfaces between perovskite band insulators
Perovskite oxides exhibit a plethora of exceptional electronic properties,
providing the basis for novel concepts of oxide-electronic devices. The
interest in these materials is even extended by the remarkable characteristics
of their interfaces. Studies on single epitaxial connections between the two
wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either
high-mobility electron conductors or insulating, depending on the atomic
stacking sequences. In the latter case they are conceivably positively charged.
For device applications, as well as for basic understanding of the interface
conduction mechanism, it is important to investigate the electronic coupling of
closely-spaced complementary interfaces. Here we report the successful
realization of such electronically coupled complementary interfaces in SrTiO3 -
LaAlO3 thin film multilayer structures, in which the atomic stacking sequence
at the interfaces was confirmed by quantitative transmission electron
microscopy. We found a critical separation distance of 6 perovskite unit cell
layers, corresponding to approximately 2.3 nm, below which a decrease of the
interface conductivity and carrier density occurs. Interestingly, the high
carrier mobilities characterizing the separate electron doped interfaces are
found to be maintained in coupled structures down to sub-nanometer interface
spacing
Experimental validation of flexibility provision by highly distributed demand portfolio
The wide scale deployment and utilization of demand side management for the provision of frequency balancing service provision is hindered by the lack of proof of performance evaluation of such mechanisms. In this paper, the pre-qualification testing approaches for performance evaluation of frequency balancing service provision by highly distributed demand portfolio are discussed. Preliminary experimental results and challenges that arise of the pre-qualification tests conducted on a highly distributed flexible resource portfolio being managed by a multi-agent based demand side management technology are presented and the need for expansion of present day testing procedures discussed
Magnetic monopole field exposed by electrons
Magnetic monopoles have provided a rich field of study, leading to a wide
area of research in particle physics, solid state physics, ultra-cold gases,
superconductors, cosmology, and gauge theory. So far, no true magnetic
monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the
central results of quantum physics, shows however, that an effective monopole
field can be produced. Understanding the effects of such a monopole field on
its surroundings is crucial to its observation and provides a better grasp of
fundamental physical theory. We realize the diffraction of fast electrons at a
magnetic monopole field generated by a nanoscopic magnetized ferromagnetic
needle. Previous studies have been limited to theoretical semiclassical optical
calculations of the motion of electrons in such a monopole field. Solid state
systems like the recently studied 'spin ice' provide a constrained system to
study similar fields, but make it impossible to separate the monopole from the
material. Free space diffraction helps to understand the dynamics of the
electron-monopole system without the complexity of a solid state system. The
use of a simple object such as a magnetized needle will allow various areas of
physics to use the general dynamical effects of monopole fields without
requiring a monopole particle or specific solids which have internal
monopole-like properties. The experiment performed here shows that even without
a true magnetic monopole particle, the theoretical background on monopoles
serves as a basis for experiments and can be applied to efficiently create
electron vortices. Various predictions about angular momentum and general field
effects can readily be studied using the available equipment. This realization
provides insights for the scientific community on how to detect magnetic
monopoles in high energy collisions, cosmological processes, or novel
materials.Comment: 5 pages, 3 figures + 7 pages of supplementary information, 8 figure
Задачи глобальной экологии
Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the slower gold atoms are confined to the smaller nanoclusters. These transformations in the Pd-Au nanocluster size and composition set a limit for chemical reactions in which such nanoclusters are involved together with hydrogen
- …