25 research outputs found

    The boundary element approach to Van der Waals interactions

    Full text link
    We develop a boundary element method to calculate Van der Waals interactions for systems composed of domains of spatially constant dielectric response. We achieve this by rewriting the interaction energy expression exclusively in terms of surface integrals of surface operators. We validate this approach in the Lifshitz case and give numerical results for the interaction of two spheres as well as the van der Waals self-interaction of a uniaxial ellipsoid. Our method is simple to implement and is particularly suitable for a full, non-perturbative numerical evaluation of non-retarded van der Waals interactions between objects of a completely general shape.Comment: 4 pages, 4 figures, RevTe

    Spectral Statistics of "Cellular" Billiards

    Full text link
    For a bounded planar domain Ω0\Omega^0 whose boundary contains a number of flat pieces Γi\Gamma_i we consider a family of non-symmetric billiards Ω\Omega constructed by patching several copies of Ω0\Omega^0 along Γi\Gamma_i's. It is demonstrated that the length spectrum of the periodic orbits in Ω\Omega is degenerate with the multiplicities determined by a matrix group GG. We study the energy spectrum of the corresponding quantum billiard problem in Ω\Omega and show that it can be split in a number of uncorrelated subspectra corresponding to a set of irreducible representations α\alpha of GG. Assuming that the classical dynamics in Ω0\Omega^0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard Random Matrix ensembles. Depending on whether α{\alpha} is real, pseudo-real or complex, the spectrum has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types of statistics, respectively.Comment: 18 pages, 4 figure

    Correlations between spectra with different symmetry: any chance to be observed?

    Full text link
    A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular, because in semiclassics spectra of different symmetry are expressed in terms of the same set of periodic orbits. We reexamine this question and find absence of correlation in the universal regime. In the case of continuous symmetry the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time

    Decay of the classical Loschmidt echo in integrable systems

    Full text link
    We study both analytically and numerically the decay of fidelity of classical motion for integrable systems. We find that the decay can exhibit two qualitatively different behaviors, namely an algebraic decay, that is due to the perturbation of the shape of the tori, or a ballistic decay, that is associated with perturbing the frequencies of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.Comment: 8 pages, 3 figures, revte

    Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    Full text link
    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.Comment: 18 pages, 8 figures, with 3 additional GIF animations available at http://chaos.fiz.uni-lj.si/~veble/boundary

    An efficient Fredholm method for calculation of highly excited states of billiards

    Full text link
    A numerically efficient Fredholm formulation of the billiard problem is presented. The standard solution in the framework of the boundary integral method in terms of a search for roots of a secular determinant is reviewed first. We next reformulate the singularity condition in terms of a flow in the space of an auxiliary one-parameter family of eigenproblems and argue that the eigenvalues and eigenfunctions are analytic functions within a certain domain. Based on this analytic behavior we present a numerical algorithm to compute a range of billiard eigenvalues and associated eigenvectors by only two diagonalizations.Comment: 15 pages, 10 figures; included systematic study of accuracy with 2 new figures, movie to Fig. 4, http://www.quantumchaos.de/Media/0703030media.av

    1/fα1/f^{\alpha} Noise in Spectral Fluctuations of Quantum Systems

    Get PDF
    The power law 1/fα1/f^{\alpha} in the power spectrum characterizes the fluctuating observables of many complex natural systems. Considering the energy levels of a quantum system as a discrete time series where the energy plays the role of time, the level fluctuations can be characterized by the power spectrum. Using a family of quantum billiards, we analyze the order to chaos transition in terms of this power spectrum. A power law 1/fα1/f^{\alpha} is found at all the transition stages, and it is shown that the exponent α\alpha is related to the chaotic component of the classical phase space of the quantum system.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Regular and Irregular States in Generic Systems

    Full text link
    In this work we present the results of a numerical and semiclassical analysis of high lying states in a Hamiltonian system, whose classical mechanics is of a generic, mixed type, where the energy surface is split into regions of regular and chaotic motion. As predicted by the principle of uniform semiclassical condensation (PUSC), when the effective â„Ź\hbar tends to 0, each state can be classified as regular or irregular. We were able to semiclassically reproduce individual regular states by the EBK torus quantization, for which we devise a new approach, while for the irregular ones we found the semiclassical prediction of their autocorrelation function, in a good agreement with numerics. We also looked at the low lying states to better understand the onset of semiclassical behaviour.Comment: 25 pages, 14 figures (as .GIF files), high quality figures available upon reques

    Autocorrelation function of eigenstates in chaotic and mixed systems

    Full text link
    We study the autocorrelation function of different types of eigenfunctions in quantum mechanical systems with either chaotic or mixed classical limits. We obtain an expansion of the autocorrelation function in terms of the correlation length. For localized states, like bouncing ball modes or states living on tori, a simple model using only classical input gives good agreement with the exact result. In particular, a prediction for irregular eigenfunctions in mixed systems is derived and tested. For chaotic systems, the expansion of the autocorrelation function can be used to test quantum ergodicity on different length scales.Comment: 30 pages, 12 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Track billiards

    Get PDF
    We study a class of planar billiards having the remarkable property that their phase space consists up to a set of zero measure of two invariant sets formed by orbits moving in opposite directions. The tables of these billiards are tubular neighborhoods of differentiable Jordan curves that are unions of finitely many segments and arcs of circles. We prove that under proper conditions on the segments and the arcs, the billiards considered have non-zero Lyapunov exponents almost everywhere. These results are then extended to a similar class of of 3-dimensional billiards. Finally, we find that for some subclasses of track billiards, the mechanism generating hyperbolicity is not the defocusing one that requires every infinitesimal beam of parallel rays to defocus after every reflection off of the focusing boundary.Comment: 7 figure
    corecore