15 research outputs found

    The Political Economy of Tax Reform in Bangladesh: Political Settlements, Informal Institutions and the Negotiation of Reform

    Get PDF
    political economy, tax reform, political settlementsThis paper explores the political economy of tax reform in Bangladesh over several decades, shedding light on the complex factors that account for unusually effective and sustained resistance to significant reform. We contend that it is necessary to understand both deep-seated formal and informal institutions and the micro-level incentives that shape the negotiation of short-term reform in order to comprehend tax outcomes. We describe a tax system that is highly informal, largely manual and characterised by high levels of discretion and corruption. However, despite appearing highly dysfunctional on the surface, this system serves the core interests of powerful political, economic and administrative actors. Underpinned by robust informal institutions, the current system delivers low and predictable tax rates to businesses, provides extensive discretion and opportunities for corruption to the tax administration, and acts as an important vehicle for political elites to raise funds and distribute patronage and economic rents. While the tax system has not been without reform, individual reform efforts have been constrained by the parameters of this broader settlement, leaving competing interest groups to pursue strategic gains at the margins while seeking to satisfy external reform demands. This tax bargain reflects Bangladesh’s broader political economy, which is characterised by entrenched informal institutions underpinning the combination of generally weak governance and high levels of economic growth – the so-called ‘paradox of Bangladesh’.DfID, NORA

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Use of Google Earth to strengthen public health capacity and facilitate management of vector-borne diseases in resource-poor environments. Bulletin of the World Health Organization 86:718-725. Un ive rsi ty of Ca pe To wn References Visualising water qual

    No full text
    Objective Novel, inexpensive solutions are needed for improved management of vector-borne and other diseases in resource-poor environments. Emerging free software providing access to satellite imagery and simple editing tools (e.g. Google Earthâ„¢) complement existing geographic information system (GIS) software and provide new opportunities for: (i) strengthening overall public health capacity through development of information for city infrastructures; and (ii) display of public health data directly on an image of the physical environment. Methods We used freely accessible satellite imagery and a set of feature-making tools included in the software (allowing for production of polygons, lines and points) to generate information for city infrastructure and to display disease data in a dengue decision support system (DDSS) framework. Findings Two cities in Mexico (Chetumal and Merida) were used to demonstrate that a basic representation of city infrastructure useful as a spatial backbone in a DDSS can be rapidly developed at minimal cost. Data layers generated included labelled polygons representing city blocks, lines representing streets, and points showing the locations of schools and health clinics. City blocks were colour-coded to show presence of dengue cases. The data layers were successfully imported in a format known as shapefile into a GIS software. Conclusion The combination of Google Earthâ„¢ and free GIS software (e.g. HealthMapper, developed by WHO, and SIGEpi, developed by PAHO) has tremendous potential to strengthen overall public health capacity and facilitate decision support system approaches to prevention and control of vector-borne diseases in resource-poor environments

    Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial

    No full text
    Background: We aimed to assess efficacy and safety, with a special focus on cardiovascular safety, of the novel dual GIP and GLP-1 receptor agonist tirzepatide versus insulin glargine in adults with type 2 diabetes and high cardiovascular risk inadequately controlled on oral glucose-lowering medications. Methods: This open-label, parallel-group, phase 3 study was done in 187 sites in 14 countries on five continents. Eligible participants, aged 18 years or older, had type 2 diabetes treated with any combination of metformin, sulfonylurea, or sodium-glucose co-transporter-2 inhibitor, a baseline glycated haemoglobin (HbA1c) of 7·5–10·5% (58–91 mmol/mol), body-mass index of 25 kg/m2 or greater, and established cardiovascular disease or a high risk of cardiovascular events. Participants were randomly assigned (1:1:1:3) via an interactive web-response system to subcutaneous injection of either once-per-week tirzepatide (5 mg, 10 mg, or 15 mg) or glargine (100 U/mL), titrated to reach fasting blood glucose of less than 100 mg/dL. The primary endpoint was non-inferiority (0·3% non-inferiority boundary) of tirzepatide 10 mg or 15 mg, or both, versus glargine in HbA1c change from baseline to 52 weeks. All participants were treated for at least 52 weeks, with treatment continued for a maximum of 104 weeks or until study completion to collect and adjudicate major adverse cardiovascular events (MACE). Safety measures were assessed over the full study period. This study was registered with ClinicalTrials.gov, NCT03730662. Findings: Patients were recruited between Nov 20, 2018, and Dec 30, 2019. 3045 participants were screened, with 2002 participants randomly assigned to tirzepatide or glargine. 1995 received at least one dose of tirzepatide 5 mg (n=329, 17%), 10 mg (n=328, 16%), or 15 mg (n=338, 17%), or glargine (n=1000, 50%), and were included in the modified intention-to-treat population. At 52 weeks, mean HbA1c changes with tirzepatide were −2·43% (SD 0·05) with 10 mg and −2·58% (0·05) with 15 mg, versus −1·44% (0·03) with glargine. The estimated treatment difference versus glargine was −0·99% (multiplicity adjusted 97·5% CI −1·13 to −0·86) for tirzepatide 10 mg and −1·14% (−1·28 to −1·00) for 15 mg, and the non-inferiority margin of 0·3% was met for both doses. Nausea (12–23%), diarrhoea (13–22%), decreased appetite (9–11%), and vomiting (5–9%) were more frequent with tirzepatide than glargine (nausea 2%, diarrhoea 4%, decreased appetite <1%, and vomiting 2%, respectively); most cases were mild to moderate and occurred during the dose-escalation phase. The percentage of participants with hypoglycaemia (glucose <54 mg/dL or severe) was lower with tirzepatide (6–9%) versus glargine (19%), particularly in participants not on sulfonylureas (tirzepatide 1–3% vs glargine 16%). Adjudicated MACE-4 events (cardiovascular death, myocardial infarction, stroke, hospitalisation for unstable angina) occurred in 109 participants and were not increased on tirzepatide compared with glargine (hazard ratio 0·74, 95% CI 0·51–1·08). 60 deaths (n=25 [3%] tirzepatide; n=35 [4%] glargine) occurred during the study. Interpretation: In people with type 2 diabetes and elevated cardiovascular risk, tirzepatide, compared with glargine, demonstrated greater and clinically meaningful HbA1c reduction with a lower incidence of hypoglycaemia at week 52. Tirzepatide treatment was not associated with excess cardiovascular risk. Funding: Eli Lilly and Company
    corecore