181 research outputs found

    Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Get PDF
    Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE)seem to be a promising technology for the implementation of light and compact force-feedback devices such as,for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivialowing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changingdeformations. In this context, the present paper addresses the development of a force feedback controller foran agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliantmechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the viscohyperelasticnature of the DE material. The model is then linearized and employed for the design of a forcecontroller. The controller employs a position sensor, which determines the actuator configuration, and a forcesensor, which measures the interaction force that the actuator exchanges with the environment. In addition, anoptimum full-state observer is also implemented, which enables both accurate estimation of the time-dependentbehavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminaryexperimental results are provided to validate the proposed actuator-controller architectur

    Analysis of total organic carbon in soil-biochar systems

    Get PDF
    Amending agricultural soils with biochar can contribute to negative carbon strategies when the resistance to oxidation of soil carbon is improved (avoided CO2 emission) and plant growth is promoted (increased CO2 fixation). The environmental stability and sequestering capacity of biochar is dependent on the chemical form of carbon and its physical location in the carbonaceous matrix. The addition of biochar in soil increases noticeably the stable carbon pool, while the effect on labile carbon, including polyaromatic structures, is less marked.1 The fertilizing action can be lost if biochar is removed from the cultivated area due to physical processes (vertical transport, lateral export, slacking). Assessing the fate of carbon in the soil requires the use of suitable analytical methods that should be validated for the presence of biochar. Please click on the file below for full content of the abstract

    Smart actuation for helicopter rotorblades

    Get PDF
    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight, the forward motion of the helicopter in the air creates an unbalance. The airspeed is increased for the blade passing in the advancing side of the helicopter, while it is reduced in the retreating side. Moreover, when each blade enters the retreating side of the helicopter, a reverse flow occurs around the profile where the blade speed is lower than the forward speed of the helicopter. The balance of a rotorcraft is solved by a cyclic pitch control, but trade-offs are made on the blade design to cope with the great variety of aerodynamic conditions. A smart blade that would adapt its characteristics to this large set of conditions would improve rotorcrafts energy efficiency while providing vibration and noise control.\ud Smart rotor blades systems are studied to adapt the aerodynamic characteristics of the blade during its revolution and to improve the overall performances. An increase in the lift over drag ratio on the retreating side has been studied to design a blade with better aerodynamic efficiency and better stall performances in the low-speed region. The maximum speed of a rotorcraft is limited by the angle of attack that the profile can sustain on the retreating side before stall. Therefore, increasing the maximum angle of attack that a profile geometry can sustain increases the rotorcraft flight envelope. Flow asymmetry and aerodynamic interaction between successive blades are also investigated to actively reduce vibrations and limit noise.\ud These improvements can be achieved by deploying flaps, by using flow control devices or by morphing the full shape of the profile at a specific places during the blade revolution. Each of the listed methods has advantages and disadvantages as well as various degrees of feasibility and integrability inside helicopter blades. They all modify the aerodynamic characteristics of the profile. Their leverage on the various aerodynamic effects depends on the control strategy chosen for actuation. Harmonic actuation is therefore studied for active noise and vibration control whereas stepped deployment is foreseen to modify the stall behaviour of the retreating side of the helicopter.\ud Helicopter blades are subjected to various force constraints such as the loads from the complex airflow and the centrifugal forces. Furthermore, any active system embedded inside a rotor blade needs to comply with the environmental constraints to which a helicopter will be subjected  during its life-span. Other concerns, like the power consumption and the data transfer for blade control, play an important role as well. Finally, such a system must have a life-time exceeding the life-time of a rotor blade and meet the same criteria in toughness, reliability and ease of maintenance.\ud Smart system is an interplay of aerodynamics, rotor-mechanics, material science and control, thus a multidisciplinary approach is essential. A large part of the work consists in building processes to integrate these domains for investigating, designing and testing smart components.\ud Piezoelectric actuators are a promising technology to bring adaptability to rotor blades. They can be used directly on the structure to actively modify its geometry, stiffness and aerodynamic behaviour or be integrated to mechanisms for the deployment of flaps. Their large specific work, toughness, reliability and small form factor make them suitable components for integration within a rotor blade. The main disadvantage of piezoelectric actuators is the small displacement and strain available. Amplification mechanisms must be optimised to produce sufficient displacement in morphing applications.\ud Smart actuation systems placed inside rotor blades have the potential to improve the efficiency and the performances of tomorrow's helicopters. Piezoelectric materials can address many of the challenges of integrating smart components inside helicopter blades. The key aspect remains the collaboration between various domains, skills and expertise to successfully implement these new technologies

    Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens?

    Get PDF
    The inhabitants of the world are expected to grow by two billion in the next two decades; as population increases, food demand rises too, leading to more intensive resource exploitation and greater negative externalities related to food production. In this paper the environmental impact of meals provided in school canteens are analysed through the Life Cycle Assessment methodology, in order to evaluate the GHGs emissions released by food production. Meals, and not just individual foods, have been considered so as to include in the analysis the nutritional aspects on which meals are based. Results shows that meat, fish and dairy products are the most impacting in terms of greenhouse gas emissions, with values that shift from 31.7 and 24.1 kg CO2 eq for butter and veal, to 2.37 kg CO2 eq for the octopus, while vegetables, legumes, fruit and cereals are less carbon intensive (average of 3.71 kg CO2 eq for the considered vegetables). When the environmental impact is related to the food energy, the best option are first courses because they combine a low carbon footprint with a high energy content. The results of the work can be used both by the consumer, who can base the meal choice on environmental impact information, and by food services, who can adjust menus to achieve a more sustainable production

    Biochar from gasification in cultivated soils and riparian buffer zones: Chemical characterization

    Get PDF
    During rain events, pollutants in agricultural soils can be transported from fields to surface and/or groundwater resulting in contamination of streams and rivers. Researchers and farmers must work together to find solutions to ensure the preservation of crop production without jeopardizing water quality or the health of the ecosystem. Establishment of riparian zones may reduce the effects of diffuse discharges of pollutants into waterways. The addition of biochar to soils, particularly in a riparian zones, can reduce the mobility of contaminants and improve removal efficiency due its sorptive capacity. Please click on the file below for full content of the abstract

    Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Get PDF
    Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE) seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the viscohyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture&nbsp

    Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Get PDF
    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6+, O8+, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented.Comment: 7 pages, 7 figure

    Defining an Essence of Structure Determining Residue Contacts in Proteins

    Get PDF
    The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to define the global features of a protein. Characterisation of this “structural essence” has remained elusive so far: no algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to identify the number and nature of essential native contacts—such a subset of spatial constraints is very useful in a number of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry. We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed “cone-peeling” that combines sequence features and network descriptors to select minimal subsets that outperform the reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the tertiary structure at approximately 4.8 Å Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy. This “structural essence” opens new avenues in the fields of structure prediction, empirical potentials and docking
    • …
    corecore