851 research outputs found

    Preface

    Get PDF

    Calibration of a granular matrix sensor for suction measurements in partially saturated pyroclastic soil

    Get PDF
    Field monitoring of soil moisture and matrix suction is a useful tool for the implementation of a reliable early warning system against rainfall-induced landslide occurrence. Several test fields have been set up in Campania region (southern Italy), frequently affected by flow-like landslides involving pyroclastic soil cover. In particular, at the Mount Faito test site (Lattari Mountains, southeast of Naples), field matric suctions were measured over two years by conventional jet-fill tensiometers and granular matrix sensors (Watermark, Irrometer®) at different depths. Granular matrix sensor is a resistive device that is more and more spread in agriculture applications and that may also be used for geotechnical purposes thanks to a suitable calibration. In order to gain the calibration curve of the Watermark sensor, two small tip tensiometers (STT) and one High Capacity Tensiometer (HCT) were installed at the same depth of the Watermark sensor in the partially saturated pyroclastic soil sampled at the topsoil of the Mount Faito test site. Tests were carried out in the laboratory by performing drying and wetting phases on undisturbed soil sample. By coupling resistance measurements by Watermark and matrix suction provided by the reference tensiometers, it was possible to derive the non-linear relationship between these two quantities. The soil retention curve was also determined thanks to the installation in the soil sample of a decagon probe previously calibrated in the same pyroclastic soil

    Numerical models for 2D free boundary analysis of groundwater in slopes stabilized by drain trenches

    Get PDF
    AbstractA numerical model for 2D free boundary analysis of groundwater in slopes stabilized by drain trenches has been developed. It consists of a front-tracking method (based on an original way of adapting the space derivatives), very effective in saving calculation time respect to classical fix-grid methods. The method analyses the trenches effect inside slopes in which the soils above the water table are partially saturated, for which a boundary can be recognized between the saturated domain (water table) and the unsaturated one (above the water table). In this case pore pressure lowering, due to trenches, can be analyzed considering the progressively reduction of the saturated domain. This approach efficiently solves the problem of fixing hydraulic boundary conditions on the sides of the trenches. Results have been compared with those obtained by a fix-grid method, observing difference less than 0.14%. Applying the method, the capability of drain trenches to control the effect of heavy rainfalls has been investigated, calculating (during the transient process of water table lowering) limit values of water recharge for which water table keeps on constant

    Nuclear functions of the tyrosine kinase Src

    Get PDF
    Src is the representative member of the Src-family kinases (SFKs), a group of tyrosine kinases involved in several cellular processes. Its main function has been for long confined to the plasma membrane/cytoplasm compartment, being a myristoylated protein anchored to the cell membrane and functioning downstream to receptors, most of them lacking intrinsic kinase activity. In the last decades, new roles for some SFKs have been described in the nuclear compartment, suggesting that these proteins can also be involved in directly regulating gene transcription or nucleoskeleton architecture. In this review, we focused on those nuclear functions specifically attributable to Src, by considering its function as both tyrosine kinase and adapting molecule. In particular, we addressed the Src involvement in physiological as well as in pathological conditions, especially in tumors

    Softening and instability of natural slopes in highly fissured plastic clay shales

    Get PDF
    International audienceSoftening is often considered to be the main cause of first-time slides in OC clay, but so far the mechanics of softening has not been satisfactorily explained. Bearing on laboratory data and field observations about landslides in tectonized highly plastic clay shales of Italian Apennines, the paper describes a process of soil weakening that could explain some failures of natural slopes

    Water retention and shrinkage curves of weathered pyroclastic soil

    Get PDF
    The modelling of the triggering mechanism of rainfall-induced landslides in slopes covered by pyroclastic soil (as the area surrounding Mount Vesuvius in Campania, Italy) requires the hydraulic characterization of soil in unsaturated conditions in order to analyse the slope response to rainfalls. In previous studies carried out on Campanian pyroclastic soils, the volumetric soil changes due to suction changes have been disregarded, being them negligible in soils characterized by low plasticity and low clay contents. However, a more accurate determination of the water retention curve (WRC) in terms of volumetric water content requires a correct estimation of the total soil volume, which is affected by the soil stress-state. The proper approach would require the estimation of both WRC in terms of gravimetric water content and the shrinkage curve (SC). In the present study, a relation between void ratio and suction was determined for a pyroclastic soil sampled at Mount Faito in Southern Italy. Therefore, a correction of the volumetric water content was carried out resulting in updated water retention curves. Here, the matric suction was the only factor affecting the stress-state of the soil
    • …
    corecore