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Abstract

A numerical model for 2D free boundary analysis of groundwater in slopes stabilized by drain trenches has been developed. It
consists of a front-tracking method (based on an original way of adapting the space derivatives), very effective in saving calculation
time respect to classical fix-grid methods. The method analyses the trenches effect inside slopes in which the soils above the water
table are partially saturated, for which a boundary can be recognized between the saturated domain (water table) and the unsaturated
one (above the water table). In this case pore pressure lowering, due to trenches, can be analyzed considering the progressively
reduction of the saturated domain. This approach efficiently solves the problem of fixing hydraulic boundary conditions on the
sides of the trenches. Results have been compared with those obtained by a fix-grid method, observing difference less than 0.14%.
Applying the method, the capability of drain trenches to control the effect of heavy rainfalls has been investigated, calculating
(during the transient process of water table lowering) limit values of water recharge for which water table keeps on constant.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the control works against landsliding, drain trenches are probably the most widely used in medium and
fine grained soils. Drain trenches are excavated and built from the ground surface to a depth well below the water
table. The action of drains reduces pore pressures in the subsoil and their seasonal fluctuations; consequently effective
stresses and soil shear strength increase. Using drain trenches in slope stabilization is very common, probably because
this technology is cheaper than others and very versatile. Drain trenches and drain pipes are undoubtedly the most
suitable remedial measures against landslides when the slip surface is deep. When slope analysis is carried out, the
increase in the safety factor due to the role of drains must be evaluated taking into account the pore pressure regime
along the supposed slip surface, as modified by drains. Therefore, numerical methods should be made available to
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Fig. 1.1. Trench section and boundary conditions.

perform an in-depth analysis of pore pressures in the presence of drains. The case in which the soil above the water
table is also saturated, which occurs in fine-grained soils, has already been analysed [1]. Here we consider a typical
situation in medium-grained soils, in which soil above the water table is unsaturated. In this situation a boundary can be
recognized between the saturated domain (water table) and the unsaturated one (above the water table). The problem
can be solved by considering the reduction in the saturated domain, delimited by a free boundary surface moving from
the initial position to the steady one. This paper presents a numerical model to analyse the pore pressure regime in
slopes stabilized by drain trenches when the soil above the water table is partially saturated. The problem was solved
by a 2D free boundary analysis carried out with an original method developed by the authors. It consists of a front-
tracking method which is very effective in saving calculation time. Since no explicit solution is available to test the
method, the results were compared with those provided by a classical fix-grid method, obtaining differences less than
0.14%. The analysis is carried out inside the saturated domain, where the classical equation of 2D consolidation [2] is
used, based on the mechanical principle that the soil porosity changes as a function of effective stresses. On the free
boundary, together with the position U = 0 (U , pore pressure) the continuity equation is considered, written for an
infinitesimal element moving with the free boundary. All along the free boundary the soil compressibility is neglected
and the volume at the disposal of the water is represented by a constant value of porosity, equal to the initial one. Water
table recharge is considered by means of the term N , which represents the flow entering through the free boundary into
the saturated domain. In Section 2 equations valid in the domain and hydraulic boundary conditions are described in
dimensional form. In Section 3 an original non-dimensional form of the previous equations and boundary conditions
is proposed. In fact the classic form of non-dimensional equation proposed by Terzaghi [2] is not so suitable for the
equation adopted on the free boundary. Section 4 deals with the numerical front-tracking method as developed in this
work. In Section 5 a dimensional case is solved; the comparison between the proposed method and a classical fix-grid
method is presented, stressing the very small differences in results. In Section 6 engineering issues of the problem are
investigated, in particular the capability of drain trenches to control the effect of heavy rainfalls. This aspect is treated,
calculating limit values of recharge for which water table keeps on constant.

As already emphasized, this work is inserted in a research project related to mathematical modelling of groundwater
in slopes stabilized by drain trenches in non-stationary situations. We started by considering the most commonly used
consolidation equations. The results obtained agree very well with the experimental data and reveal the capability of
predicting the efficiency of drain trenches. Our success prompts us to consider nonlinear models as well, e.g. [3–5].
In this case suitable computational methods of nonlinear problems might be useful, e.g. [6–8].

2. Groundwater in soil between drain trenches

Let us focus our attention on the vertical section between two consecutive trenches, Fig. 1.1. Denote by h the
piezometric head

h = Z + U/γw, (2.1)
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where U is the pore pressure and γw the water specific weight. In addition, let

F ≡ Z − S(X, T ) = 0, ⇔ Z = S(X, T ), (2.2)

be the equation of the free surface. When the subsoil is modelled by an isotropic linearly elastic medium, the equation
of transient flow in

ΩT = {(X, Z) : 0 < X < L , 0 < Z < S(X, T )} (2.3)

is expressed, according to [2], as follows:

hT = cv1h, (X, Z) ∈ ΩT , 1 = ∂X X + ∂Z Z , (2.4)

with the consolidation coefficient cv given by

cv =
K E

2(1 − 2ν)(1 + ν)γw

, (2.5)

where K is the hydraulic conductivity, E the Young modulus and ν the Poisson index.
As illustrated in Fig. 1.1, the depth of the trenches is denoted by H0 and the height of the analysed domain is

indicated by H . With these notations the hydraulic conditions at the boundaries X = 0 and X = L are given by

∂h
∂n

(0, Z , T ) = 0, 0 < Z < H − H0,

U (0, Z , T ) = 0, H − H0 ≤ Z ≤ S,
(2.6)

∂h
∂n

(L , Z , T ) = 0, 0 < Z < H − H0,

U (L , Z , T ) = 0, H − H0 ≤ Z ≤ S.
(2.7)

The other two boundary conditions are expressed by

∂h
∂n

(X, 0, T ) = 0, 0 ≤ X ≤ L , (2.8)

U (X, S, T ) = 0, 0 < X < L . (2.9)

Moreover, because of the continuity requirement, a further equation holds on the free surface, [9],

(q − K N) · n = nv · n, (2.10)

where n denotes the porosity, v the velocity of propagation of the free surface, n the outward unit normal and q the
specific discharge at the free surface. In addition, N denotes the accretion and it is directed vertically downward. In
this work it allows for the rain that infiltrates the soil surface and reaches the water table. Negative accretion is due to
evaporation or evapotranspiration from the ground surface. N follows a seasonal trend, depending on the rainfall and
may be a function of time and space as well. The coefficient K represents the hydraulic conductivity and is introduced
for convenience, given that

q = −K∇h, (2.11)

because of the Darcy law. An alternative form of Eq. (2.10) is the following

ST = −K [1 + UZ (1 + S2
X )/γw − N ]/n, (2.12)

which appears more suitable for subsequent discussion. Eq. (2.12) was obtained by straightforward calculations which
are provided in the Appendix for convenience.

3. Free-boundary problem

By considering relation (2.1), the free-boundary-value problem introduced in Section 2 can be summarized by the
following equations:

UT = cv1U, (X, Z) ∈ ΩT , T > 0, (3.1)
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UX = 0, X = 0, 0 < Z < H − H0, T > 0,

U = 0, X = 0, H − H0 ≤ Z ≤ S, T > 0,
(3.2)

UZ = −γw, 0 ≤ X ≤ L , Z = 0, T > 0, (3.3){
UX = 0, X = L , 0 < Z < H − H0, T > 0,

U = 0, X = L , H − H0 ≤ Z ≤ S, T > 0,
(3.4)

U = 0, 0 < X < L , Z = S, T > 0, (3.5)

ST = −K [1 + UZ (1 + S2
X )/γw − N ]/n, 0 < X < L , Z = S, T > 0. (3.6)

Finally, the initial conditions must be prescribed. If it is assumed that the groundwater is initially horizontal at a depth
Dw from the ground surface, then

S(X, 0) = H − Dw, 0 ≤ X ≤ L . (3.7)

Furthermore, we also assume

U (X, Z , 0) = γw M(1 − Z/M), 0 ≤ X ≤ L , 0 ≤ Z ≤ M, (3.8)

where

M = H − Dw. (3.9)

However, we explicitly emphasize that quite general initial conditions can be assigned. Now, the preceding equations
are transformed into a non-dimensional form. Use the new unknown functions u(x, z, t) and s(x, t), defined by

u = U/U∗, s = SK/cv, (3.10)

where

x = X K/cv, z = Z K/cv, t = T K 2/cv, U∗
= γwcv/K . (3.11)

Hence

ut = 1u, (x, z) ∈ Ωt , t > 0, (3.12){
ux = 0, x = 0, 0 < z < (H − H0)K/cv, t > 0,

u = 0, x = 0, (H − H0)K/cv ≤ z ≤ s, t > 0,
(3.13)

uz = −1, 0 ≤ x ≤ L K/cv, z = 0, t > 0, (3.14){
ux = 0, x = L K/cv, 0 < z < (H − H0)K/cv, t > 0,

u = 0, x = L K/cv, (H − H0)K/cv ≤ z ≤ s, t > 0,
(3.15)

u = 0, 0 < x < L K/cv, z = s, t > 0, (3.16)
u = M K/cv − z, 0 ≤ x ≤ L K/cv, 0 ≤ z ≤ M K/cv, t = 0, (3.17)

st = −[1 + uz(1 + s2
x ) − N ]/n, 0 < x < L K/cv, z = s, t > 0, (3.18)

s(x, 0) = M K/cv, 0 ≤ x ≤ L K/cv. (3.19)

4. Numerical model

In this section a new front-tracking method is developed for the problem stated in the preceding section. Next, a
suitable fixed-grid method will be presented and the results compared.

Let (xi , z j
i,k) be the generic grid point at time j , where

xi = i1x, z j
i,k = k1z j

i , i = 0, . . . , Nx , k = 0, . . . , Nz, (4.1)

and

1x = L K/(cv Nx ), 1z j
i = s(xi , t j )/Nz . (4.2)
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Fig. 4.1. Front-tracking mesh.

Denote by u j
i (z j

i,k) the value of function u at (xi , z j
i,k, t j ) and, when there is no ambiguous interpretation,

u j
i,k = u j

i (z j
i,k). (4.3)

The objective is to find u j+1
i,k and s j+1

i when u j
i,k and s j

i are known. First, note that a solution of (3.12) is approximated
by

u j+1
i (z j

i,k) = u j
i (z j

i,k) + r11x2(uxx )
j
i,k + r j

2i (1z j
i )2(uzz)

j
i,k, (4.4)

where

r j
1 =

1t j

1x2 , r j
2i =

1t j

(1z j
i )2

. (4.5)

The derivative (uxx )
j
i,k can be functionally related to the mesh points depicted by circles in Fig. 4.1. Indeed, with the

positions

δ
g,h
i,k = z j

g,h − z j
i,k, (4.6)

we have

u j
i−1,k+1 = u j

i,k − (ux )
j
i,k1x + (uz)

j
i,kδ

i−1,k+1
i,k + (uxx )

j
i,k

1x2

2

− (uxz)
j
i,k1xδ

i−1,k+1
i,k + (uzz)

j
i,k

(δ
i−1,k+1
i,k )2

2
, (4.7)

u j
i−1,k−1 = u j

i,k − (ux )
j
i,k1x + (uz)

j
i,kδ

i−1,k−1
i,k + (uxx )

j
i,k

1x2

2

− (uxz)
j
i,k1xδ

i−1,k−1
i,k + (uzz)

j
i,k

(δ
i−1,k−1
i,k )2

2
, (4.8)

u j
i+1,k−1 = u j

i,k + (ux )
j
i,k1x + (uz)

j
i,kδ

i+1,k−1
i,k + (uxx )

j
i,k

1x2

2

+ (uxz)
j
i,k1xδ

i+1,k−1
i,k + (uzz)

j
i,k

(δ
i+1,k−1
i,k )2

2
, (4.9)

u j
i+1,k+1 = u j

i,k + (ux )
j
i,k1x + (uz)

j
i,kδ

i+1,k+1
i,k + (uxx )

j
i,k

1x2

2

+ (uxz)
j
i,k1xδ

i+1,k+1
i,k + (uzz)

j
i,k

(δ
i+1,k+1
i,k )2

2
. (4.10)

Summing Eqs. (4.7)–(4.9) and Eqs. (4.8)–(4.10) yields

u j
i−1,k+1 + u j

i+1,k−1 = 2u j
i,k + (uz)

j
i,k(δ

i−1,k+1
i,k + δ

i+1,k−1
i,k ) + (uxx )

j
i,k1x2

+ (uxz)
j
i,k1xδ

i+1,k−1
i−1,k+1 +

1
2

[
(δ

i−1,k+1
i,k )2

+ (δ
i+1,k−1
i,k )2

]
(uzz)

j
i,k, (4.11)
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u j
i−1,k−1 + u j

i+1,k+1 = 2u j
i,k + (uz)

j
i,k(δ

i−1,k−1
i,k + δ

i+1,k+1
i,k ) + (uxx )

j
i,k1x2

+ (uxz)
j
i,k1xδ

i+1,k+1
i−1,k−1 +

1
2

[
(δ

i−1,k−1
i,k )2

+ (δ
i+1,k+1
i,k )2

]
(uzz)

j
i,k . (4.12)

From the last two equations it follows that:

(uxx )
j
i,k =

1
γi,k1x2

[
(u j

i−1,k+1 + u j
i+1,k−1)δ

i+1,k+1
i−1,k−1 − 2γi,ku j

i,k − ρi,k(uzz)
j
i,k/2

− νi,k(uz)
j
i,k − (u j

i−1,k−1 + u j
i+1,k+1)δ

i+1,k−1
i−1,k+1

]
, (4.13)

where

γi,k = δ
i+1,k+1
i−1,k−1 − δ

i+1,k−1
i−1,k+1, (4.14)

νi,k = (δ
i−1,k+1
i,k + δ

i+1,k−1
i,k )δ

i+1,k+1
i−1,k−1 − (δ

i−1,k−1
i,k + δ

i+1,k+1
i,k )δ

i+1,k−1
i−1,k+1, (4.15)

ρi,k =

[
(δ

i−1,k+1
i,k )2

+ (δ
i+1,k−1
i,k )2

]
δ

i+1,k+1
i−1,k−1 −

[
(δ

i−1,k−1
i,k )2

+ (δ
i+1,k+1
i,k )2

]
δ

i+1,k−1
i−1,k+1 . (4.16)

Substituting (uz)
j
i,k in (4.13) by the central approximation provides the desired expression for (uxx )

j
i,k :

(uxx )
j
i,k =

1
γi,k1x2

[
(u j

i−1,k+1 + u j
i+1,k−1)δ

i+1,k+1
i−1,k−1 − 2γi,ku j

i,k − ρi,k(uzz)
j
i,k/2

− νi,k(u
j
i,k+1 − u j

i,k−1)/21z j
i − (u j

i−1,k−1 + u j
i+1,k+1)δ

i+1,k−1
i−1,k+1

]
. (4.17)

Now, inserting this result into Eq. (4.4) yields

u j+1
i (ζ

j
i,k) =

[
1 − 2r j

1 − 2r j
2i +

(r̂1)
j
i,kρi,k

(1z j
i )2

]
u j

i,k

+ (r̂1)
j
i,kδ

i−1,k+1
i+1,k−1

[
u j

i−1,k−1 + u j
i+1,k+1

]
+ (r̂1)

j
i,kδ

i+1,k+1
i−1,k−1

[
u j

i−1,k+1 + u j
i+1,k−1

]
+

[
r j

2i −
(r̂1)

j
i,kρi,k

2(1z j
i )2

+
(r̂1)

j
i,kνi,k

21z j
i

]
u j

i,k−1 +

[
r j

2i −
(r̂1)

j
i,kρi,k

2(1z j
i )2

−
(r̂1)

j
i,kνi,k

21z j
i

]
u j

i,k+1, (4.18)

where the central approximation has been used for (uzz)
j
i,k and, in addition,

(r̂1)
j
i,k = r j

1 /γi,k .

Straightforward calculations show that method (4.18) is stable if

1 − 2r j
1 − 2r j

2i +
(r̂1)

j
i,kρi,k

(1z j
i )2

≥ 0, (4.19)

r j
2i −

(r̂1)
j
i,kρi,k

2(1z j
i )2

±
(r̂1)

j
i,kνi,k

21z j
i

≥ 0. (4.20)

Remark 4.1. For rectangular mesh characterized by

r1 = 1t/1x2, r2 = 1t/1z2, (4.21)

it is γi,k = 41z, ρi,k = 81z3, νi,k = 0, and the conditions (4.19) and (4.20) reduce to

1 − 2r2 ≥ 0, r2 − r1 ≥ 0. (4.22)
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Table 5.1
S1 (fix-grid method) and S2 (front-tracking method)

X 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

S1 9.387 9.478 9.570 9.643 9.670 9.742 9.774 9.796 9.811 9.820 9.823
S2 9.391 9.479 9.567 9.638 9.692 9.733 9.763 9.784 9.798 9.806 9.809

Furthermore, Eq. (4.18) becomes

u j+1
i,k = (1 − 2r2)u

j
i,k + (r2 − r1)(u

j
i,k−1 + u j

i,k+1)

+ r1(u
j
i−1,k−1 + u j

i+1,k+1 + u j
i−1,k+1 + u j

i+1,k−1)/2. (4.23)

Note that (4.23) does not reduce to the classical explicit method, e.g. [10]. This also emphasizes the novelty of
algorithm (4.18).

Eq. (4.18) provides u j+1
i (z j

i,k). To obtain u j+1
i (z j+1

i,k ) consider

u j+1
i (z j

i,k) = u j+1
i (z j+1

i,k ) + (uz)
j+1
i,k (z j+1

i,k )[z j
i,k − z j+1

i,k ] + (uzz)
j+1
i,k (z j+1

i,k )[z j
i,k − z j+1

i,k ]
2/2. (4.24)

Hence, by using the central approximations for both partial derivatives and the position

d j
i = [z j

i,k − z j+1
i,k ]/1z j+1

i , (4.25)

it follows that:

u j+1
i (z j+1

i,k−1)[(d
j

i )2
− d j

i ]/2 + u j+1
i (z j+1

i,k )[1 − (d j
i )2

] + u j+1
i (z j+1

i,k+1)[(d
j

i )2
+ d j

i ]/2 = u j+1
i (z j

i,k). (4.26)

Solving this system gives the pressure u j
i (z j+1

i,k ). Finally, the free boundary is obtained by

s j+1
i = s j

i − 1t j
{1 + uz(xi , s j

i , t j )[1 + s2
x (xi , t j )] − N j

i }/n, (4.27)

with

uz(xi , s j
i , t j ) = (3u j

i,Nz
− 4u j

i,Nz−1 + u j
i,Nz−2)/21z j

i , (4.28)

sx (xi , t j ) = (s j
i+1 − s j

i−1)/21x . (4.29)

5. Discussion of preliminary results

First, the new computational method is tested by using the following special data:

cv = 3.8 × 10−6 m2/s, K = 10−8 m/s, (5.1)
L = 20 m, H = 10 m, H0 = 5 m, Dw = N = 0. (5.2)

Since, to our knowledge, no explicit solution is available for the free-boundary-value problem (3.12)–(3.19), the
numerical results provided by the front-tracking method are compared with those obtained by a suitable fix-grid
method. Here, the evolution of the free surface is obtained by Eq. (3.18) and the solution of Eq. (3.12) is computed by
the classical explicit method, e.g. [10],

u j+1
i,k = (1 − 2r1 − 2r2)u

j
i,k + r1(u

j
i−1,k + u j

i+1,k) + r2(u
j
i,k−1 + u j

i,k+1). (5.3)

For T = 365 days, the free boundaries are depicted in Fig. 5.1 and the numerical values are compared in Table 5.1.
Since S is symmetrical, only the results for 0 ≤ X ≤ 10 are reported. Note a difference no greater than 0.14%.
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Fig. 5.1. S1 (fix-grid method) and S2 (front-tracking method).

Fig. 6.1. ŪX (it is the average of the function Ux along the segment H − Ho ≤ Z ≤ S) and 1ŪX /1T against time, from the initial condition.

6. Results of analysis

The transient process from the initial condition to the steady one was analysed for a case in which the consolidation
process is very slow. Geometrical and soil parameters are those indicated in Section 5: thus at the initial condition
(T = 0) the water table is at the ground surface, from which there is no recharge to the water table (N = 0). During
the transient phenomenon, from T = 0 to the steady condition (T = ∞), water flow toward the trenches decreases
with time: this is shown in Fig. 6.1 where the average value ŪX , calculated along the segment H − Ho ≤ Z ≤ S
is reported against time. The velocity of the process calculated as 1ŪX/1T decreases quickly with time: this means
that nevertheless the phenomenon is longlasting the water table is markedly lowered in the first period of the trench
work. This is an important result for engineering applications.

Results presented in Figs. 6.2–6.4 are the solution of the problem for different times: at the initial condition, one
year after, eight years after the beginning of trench work. In each figure two axes are reported: on the left there is
the height above the Z = 0 plane, useful to locate the free boundary position, on the right there is the scale of pore
pressure, useful to represent the envelope of pore pressure on the plane through the base of the trenches. The position
of the free boundary allows us to determine the height of the trench which is working at the time considered (it is
the height below the free surface). The envelope of pore pressure on a deep plane allows the efficiency of the trench
to be assessed on that plane. In this case for simplicity the plane for the base of the trenches is chosen, but when
the position of the slip surface is known, pore pressures have to be determined along it. It can be seen that the free
boundary (whose position is essential to fix the boundary condition on the trench wall) is well above the pore pressure
envelope. This means that a large part of the height of the trench works even after a long time from the beginning of
drainage and trenches are always ready to discharge water flow of heavy rains. This justifies the capability of drain
trenches of avoiding pore pressure peaks during wet seasons. Indeed, previous analyses and measurements carried out
on instrumented sites [1] where drain trenches were constructed, show that the water table is not subject to seasonal
fluctuations as it occurs in the absence of drains. This behaviour can be modelled imposing ST = 0 in Eq. (2.12) or
st = 0 in Eq. (3.18). This was done after one year of water table lowering characterized by N = 0.2 (which can
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Fig. 6.2. Initial condition: The free boundary surface (above), represented respect to the axis of height (on the left, in m) and the envelope of pore
pressure (below) on the plane through the base of the trenches, represented respect to the axis of pressure (on the right, in Pa).

Fig. 6.3. The free boundary surface (above) and the envelope of pore pressure (below) on the plane through the base of the trenches, after one year
from the beginning of the trench work.

Fig. 6.4. The free boundary surface (above) and the envelope of pore pressure (below) on the plane through the base of the trenches, after eight
years from the beginning of the trench work.

be considered a likely yearly average of water table recharge). A heavy rainfall is thus simulated, to investigate the
response of the trenches (rainfall is simply schematized by accretion N ). Values of accretion are calculated, for which
the water table remains constant; the duration of the event is also considered (Fig. 6.5). These values define a curve
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Fig. 6.5. Values of accretion N for which S keeps on constant, against the distance of the considered point from the middle axis of the trenches.

Fig. 6.6. Values of accretion N∞ for which S̄∞ keeps on constant, against the duration of the rainfall.

above which there are critical rainfalls that can induce an increase in pore pressure in the subsoil. Due to recharge,
the profile of the water table between the trenches greatly changes. This is shown by Fig. 6.5 that shows N values
for which the water table remains at the same level, against the distance of the considered point from the middle axis
of the trenches. Over time, from the beginning of rainfall, N increases up to the steady value: with the duration of
the rainfall, the ability of drain trenches to discharge water infiltrating in the subsoil also increases. In the middle,
low values of N (≥0.2) can lead the water table to rise; near trenches also the larger values of N (≈1) are unable
to increase pore pressure in the subsoil. Given the value S̄∞ that expresses the average of the function S(X, T ) for
0 < X < L at T = ∞, it can be seen in Fig. 6.6 that trenches (arranged at a relative distance of 20 m) are able to
discharge water infiltrating in the subsoil, without increasing pore pressure in the slope, up to N = 0.41.

The value N = 0.41 is large enough for engineering applications, given that the maximum infiltration in the subsoil
(after a small initial period from the beginning of rainfall) is 1, [11], and that part of the infiltration goes back to the
atmosphere in evaporation and evapotranspiration. As a consequence a design with a small distance between trenches
improves the ability of the drain system to prevent the critical effects of heavy rainfalls.

7. Conclusion

The important role of drains working in unstable slopes is shown through an analysis with a new computational
method developed in this work. A case typical of medium grained soil was considered, in which the soil above the
water table is partially saturated. Therefore a boundary surface can be recognized between the saturated domain
(water table) and the unsaturated one (above the water table); the problem is solved by calculating the motion of the
free boundary. The new computational method consists of a front-tracking method which is very effective in saving
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calculation time compared with fix-grid methods. It has been shown that also for rectangular mesh the new method
does not reduce to the classical explicit method. Because no explicit solution is available for the free-boundary problem
the numerical results, provided by the front-tracking method, were compared with those obtained by a suitable fix-grid
method. Differences are less than 0.14%.

The results were used to investigate the efficiency of the trenches in transient conditions. During the phase of water
table lowering, characterized by no water recharge, a heavy rainfall was simulated to describe the response of the
trenches. Values of accretion were calculated, for which the water table remains constant, as a function of the duration
of the event. The results define a curve, above which rainfalls are critical and induce an increase in pore pressure in the
slope. It was shown that up to large values of recharge, trenches are able to discharge water infiltrating in the subsoil,
without increasing the pore pressure. This capability is a function of the relative distance between trenches that is the
most important design element to improve the capability of the drain system in preventing the critical effects of heavy
rainfalls.

Appendix

In this appendix we briefly provide the calculations which lead to Eq. (2.12). From (2.10) and (2.11) it follows that:

−K (∇h + N) · n = nv · n, (A.1)

where

n = ∇F/|∇F |, ∇F = (−SX , 1), (A.2)

and

N = −Nk, k = unit vector directed as z. (A.3)

In addition, Eq. (2.2) implies

FT + ∇F · v = 0, (A.4)

with FT = −ST . Insert the last results into Eq. (A.1) to get

−K (∇h · ∇F − N ) = nST . (A.5)

Since h is related to U by the relation (2.1), it is

∇h = (UX/γw, 1 + UZ/γw). (A.6)

On the other hand, from U (X, S(X, T )) = 0 it follows that:

UX = −SX UZ . (A.7)

Insert (A.6) and (A.7) into Eq. (A.5) to obtain

nST = −K [1 + UZ (1 + S2
X )/γw − N ], (A.8)

which is exactly Eq. (2.12).
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