2,118 research outputs found

    Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes

    Get PDF
    Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure–activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp2 carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes

    Diabetes and tuberculosis: the impact of the diabetes epidemic on tuberculosis incidence.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a major cause of mortality in developing countries, and in these countries diabetes prevalence is increasing rapidly. Diabetes increases the risk of TB. Our aim was to assess the potential impact of diabetes as a risk factor for incident pulmonary tuberculosis, using India as an example. METHODS: We constructed an epidemiological model using data on tuberculosis incidence, diabetes prevalence, population structure, and relative risk of tuberculosis associated with diabetes. We evaluated the contribution made by diabetes to both tuberculosis incidence, and to the difference between tuberculosis incidence in urban and rural areas. RESULTS: In India in 2000 there were an estimated 20.7 million adults with diabetes, and 900,000 incident adult cases of pulmonary tuberculosis. Our calculations suggest that diabetes accounts for 14.8% (uncertainty range 7.1% to 23.8%) of pulmonary tuberculosis and 20.2% (8.3% to 41.9%) of smear-positive (i.e. infectious) tuberculosis. We estimate that the increased diabetes prevalence in urban areas is associated with a 15.2% greater smear-positive tuberculosis incidence in urban than rural areas - over a fifth of the estimated total difference. CONCLUSION: Diabetes makes a substantial contribution to the burden of incident tuberculosis in India, and the association is particularly strong for the infectious form of tuberculosis. The current diabetes epidemic may lead to a resurgence of tuberculosis in endemic regions, especially in urban areas. This potentially carries a risk of global spread with serious implications for tuberculosis control and the achievement of the United Nations Millennium Development Goals

    Space VLBI Observations of 3C 279 at 1.6 and 5 GHz

    Get PDF
    We present the first VLBI Space Observatory Programme (VSOP) observations of the gamma-ray blazar 3C 279 at 1.6 and 5 GHz. The combination of the VSOP and VLBA-only images at these two frequencies maps the jet structure on scales from 1 to 100 mas. On small angular scales the structure is dominated by the quasar core and the bright secondary component `C4' located 3 milliarcseconds from the core (at this epoch). On larger angular scales the structure is dominated by a jet extending to the southwest, which at the largest scale seen in these images connects with the smallest scale structure seen in VLA images. We have exploited two of the main strengths of VSOP: the ability to obtain matched-resolution images to ground-based images at higher frequencies and the ability to measure high brightness temperatures. A spectral index map was made by combining the VSOP 1.6 GHz image with a matched-resolution VLBA-only image at 5 GHz from our VSOP observation on the following day. The spectral index map shows the core to have a highly inverted spectrum, with some areas having a spectral index approaching the limiting value for synchrotron self-absorbed radiation of 2.5. Gaussian model fits to the VSOP visibilities revealed high brightness temperatures (>10^{12} K) that are difficult to measure with ground-only arrays. An extensive error analysis was performed on the brightness temperature measurements. Most components did not have measurable brightness temperature upper limits, but lower limits were measured as high as 5x10^{12} K. This lower limit is significantly above both the nominal inverse Compton and equipartition brightness temperature limits. The derived Doppler factor, Lorentz factor, and angle to the line-of-sight in the case of the equipartition limit are at the upper end of the range of expected values for EGRET blazars.Comment: 11 pages, 6 figures, emulateapj.sty, To be published in The Astrophysical Journal, v537, Jul 1, 200

    Rural to Urban Migration and Changes in Cardiovascular risk Factors in Tanzania: A Prospective Cohort Study.

    Get PDF
    High levels of rural to urban migration are a feature of most African countries. Our aim was to investigate changes, and their determinants, in cardiovascular risk factors on rural to urban migration in Tanzania. Men and women (15 to 59 years) intending to migrate from Morogoro rural region to Dar es Salaam for at least 6 months were identified. Measurements were made at least one week but no more than one month prior to migration, and 1 to 3 monthly after migration. Outcome measures included body mass index, blood pressure, fasting lipids, and self reported physical activity and diet. One hundred and three men, 106 women, mean age 29 years, were recruited and 132 (63.2%) followed to 12 months. All the figures presented here refer to the difference between baseline and 12 months in these 132 individuals. Vigorous physical activity declined (79.4% to 26.5% in men, 37.8% to 15.6% in women, p < 0.001), and weight increased (2.30 kg men, 2.35 kg women, p < 0.001). Intake of red meat increased, but so did the intake of fresh fruit and vegetables. HDL cholesterol increased in men and women (0.24, 0.25 mmoll-1 respectively, p < 0.001); and in men, not women, total cholesterol increased (0.42 mmoll-1, p = 0.01), and triglycerides fell (0.31 mmoll-1, p = 0.034). Blood pressure appeared to fall in both men and women. For example, in men systolic blood pressure fell by 5.4 mmHg, p = 0.007, and in women by 8.6 mmHg, p = 0.001. The lower level of physical activity and increasing weight will increase the risk of diabetes and cardiovascular disease. However, changes in diet were mixed, and may have contributed to mixed changes in lipid profiles and a lack of rise in blood pressure. A better understanding of the changes occurring on rural to urban migration is needed to guide preventive measures

    Electrochemistry at highly oriented pyrolytic graphite (HOPG) : lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models

    Get PDF
    The electron transfer (ET) kinetics of three redox couples in aqueous solution, IrCl62−/3−, Ru(NH3)63+/2+ and Fe(CN)64−/3−, on different grades of highly oriented pyrolytic graphite (HOPG) have been investigated in a droplet-cell setup. This simple configuration allows measurements to be made on a very short time scale after cleavage of HOPG, so as to minimise possible effects from (atmospheric) contamination, and with minimal, if any, change to the HOPG surface. However, the droplet-cell geometry differs from more conventional electrochemical setups and is more prone to ohmic drop effects. The magnitude of ohmic drop is elucidated by modelling the electric field in a typical droplet configuration. These simulations enable ohmic effects to be minimised practically by optimising the positions of the counter and reference electrodes in the droplet, and by using a concentration ratio of electrolyte to redox species that is higher than used conventionally. It is shown that the ET kinetics for all of the redox species studied herein is fast on all grades of HOPG and lower limits for ET rate constants are deduced. For IrCl62−/3− and Fe(CN)64−/3−, ET on HOPG is at least as fast as on Pt electrodes, and for Ru(NH3)63+/2+ ET kinetics on HOPG is comparable to Pt electrodes. Given the considerable difference in the density of electronic states (DOS) between graphite and metal electrodes, the results tend to suggest that the DOS of the electrode does not play an important role in the ET kinetics of these outer-sphere redox couples over the range of values encompassing HOPG and metals. This can be rationalised because the DOS of all of these different electrode materials is orders of magnitude larger than those of the redox species in solution, so that with strong electronic coupling between the redox couple and electrode (adiabatic electron transfer) the electronic structure of the electrode becomes a relatively unimportant factor in the ET kinetics

    Monitoring the Bi-Directional Relativistic Jets of the Radio Galaxy 1946+708

    Full text link
    We report on a multi-frequency, multi-epoch campaign of Very Long Baseline Interferometry observations of the radio galaxy 1946+708 using the VLBA and a Global VLBI array. From these high-resolution observations we deduce the kinematic age of the radio source to be \sim4000 years, comparable with the ages of other Compact Symmetric Objects (CSOs). Ejections of pairs of jet components appears to take place on time scales of 10 years and these components in the jet travel outward at intrinsic velocities between 0.6 and 0.9 c. From the constraint that jet components cannot have intrinsic velocities faster than light, we derive H_0 > 57 km s^-1 Mpc^-1 from the fastest pair of components launched from the core. We provide strong evidence for the ejection of a new pair of components in ~1997. From the trajectories of the jet components we deduce that the jet is most likely to be helically confined, rather than purely ballistic in nature.Comment: 20 pages, 8 figures, accepted to Ap

    θ13\theta_{13} and the Higgs mass from high scale supersymmetry

    Full text link
    In the framework in which supersymmetry is used for understanding fermion masses rather than stabilizing the electroweak scale, we elaborate the phenomenological analysis for the neutrino physics. A relatively large sinθ13\sin{\theta_{13}} is the natural result. The model further predicts vanishingly small CP violation in neutrino oscillations. And θ23\theta_{23} is not necessarily maximal. While the high scale supersymmetry generically results in a Higgs mass of about 141 GeV, our model reduces this mass via introducing SU(2)L_L triplet fields which also contribute to neutrino masses.Comment: 13 pages, no figure, revtex4, revised versio

    On the Nature of Andromeda IV

    Get PDF
    Lying at a projected distance of 40' or 9 kpc from the centre of M31, Andromeda IV is an enigmatic object first discovered during van den Bergh's search for dwarf spheroidal companions to M31. Being bluer, more compact and higher surface brightness than other known dwarf spheroidals, it has been suggested that And IV is either a relatively old `star cloud' in the outer disk of M31 or a background dwarf galaxy. We present deep HST WFPC2 observations of And IV and the surrounding field which, along with ground-based long-slit spectroscopy and Halpha imagery, are used to decipher the true nature of this puzzling object. We find compelling evidence that And IV is a background galaxy seen through the disk of M31. The moderate surface brightness (SB(V)~24), very blue colour (V-I<~0.6), low current star formation rate (~0.001 solar mass/yr) and low metallicity (~10% solar) reported here are consistent with And IV being a small dwarf irregular galaxy, perhaps similar to Local Group dwarfs such as IC 1613 and Sextans A. Although the distance to And IV is not tightly constrained with the current dataset, various arguments suggest it lies in the range 5<~D<~8 Mpc, placing it well outside the confines of the Local Group. It may be associated with a loose group of galaxies, containing major members UGC 64, IC 1727 and NGC 784. We report an updated position and radial velocity for And IV.Comment: 26 pages, LaTex with 9 figures (including 6 jpg plates). Accepted for publication in A

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science
    corecore