92 research outputs found

    Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Get PDF
    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO2.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone.A oxidação de etanol foi estudada sobre eletrodos Pt-Sn e Pt-Sn-W preparados em forno a arco elétrico. Diferentes técnicas eletroquímicas, tais como voltametria cíclica e cronoamperometria foram utilizadas para avaliar a atividade catalítica desses materiais. O processo de eletro-oxidação também foi investigado in situ por espectroscopia de reflectância na região do infravermelho para determinar intermediários adsorvidos e produtos da reação. Os resultados experimentais indicaram que as ligas Pt-Sn e Pt-Sn-W são capaz de oxidar etanol principalmente para acetaldeído e ácido acético. CO adsorvido também foi detectado, demonstrando a viabilidade do rompimento da ligação C-C na molécula de etanol durante o processo de oxidação. Adicionalmente, o CO adsorvido foi oxidado a CO2. Esse produto de reação foi claramente detectado por SNIFTIRS. O catalisador Pt-Sn-W mostrou um melhor desempenho eletroquímico em relação ao Pt-Sn e este, por sua vez, é melhor do que Pt pura.CAPES - COFECUBCNP

    Effect of palladium on gold in core-shell catalyst for electrooxidation of ethanol in alkaline medium

    Get PDF
    In this paper the effect of small amounts of palladium deposited on gold nanoparticles supported on Vulcan XC-72 carbon (core-shell structure denoted Au@Pd/C) is studied. Different nominal atomic compositional ratios of Au@Pdx maintaining fixed gold nuclei and varying the amount of palladium (x = 0.10; 0.80 and 1.60) were synthesized via seed growth method for the ethanol oxidation reaction in alkaline medium. UV–Vis spectrometric, X-ray powder diffraction, X-ray energy dispersive spectroscopy, transmission electron microscopy and electrochemical measurements were performed for the characterization of these catalysts. Electrocatalytic activity toward ethanol oxidation on Au@Pd/C catalysts were investigated by cyclic voltammetry and chronoamperometry showed that [email protected]/C electrocatalyst has the highest current density and low onset potential for ethanol oxidation reaction in alkaline medium. In-situ Fourier transform infrared spectroscopy measurements demonstrated that acetate is the main product of ethanol oxidation and CO2 can be slightest observed, the latter could be visualized in greater quantity on catalyst [email protected]/C catalyst

    Synthesis of Fe/Ti oxides from a single source alkoxide precursor under inert atmosphere

    Get PDF
    The heterometal alkoxide [FeCl{Ti2(OPr i)9}] (1) was employed as a single source precursor for the preparation of Fe/Ti oxides under inert atmosphere. Three different synthetic procedures were adopted in the processing of 1, either employing aqueous HNO3 or HCl solutions, or in the absence of mineral acids. Products were characterised by powder X-ray diffractometry, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS) and Raman, electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. Oxide products contained titanium(IV) and either iron(III) or iron(II), depending on reaction conditions and thermal treatment temperatures. An interesting iron(III)→iron(II) reduction was observed at 1000 ºC in the HNO3-containing system, leading to the detection of ilmenite (FeTiO3). SEM/EDS studies revealed a highly heterogeneous metal distribution in all products, possibly related to the presence of a significant content of carbon and of structural defects (oxygen vacancies) in the solids.O alcóxido heterometálico [FeCl{Ti2(OPr i)9}] (1) foi utilizado como um precursor de fonte única para a preparação de óxidos de Fe/Ti sob atmosfera inerte. Três procedimentos sintéticos distintos foram adotados no processamento de 1, com o emprego de soluções aquosas ácidas (HNO3 ou HCl), ou na ausência de ácido mineral. Os produtos foram caracterizados por difratometria de raios X (pó), microscopia eletrônica de varredura combinada com espectroscopia de dispersão de raios X (MEV/EDS) e espectroscopias Raman, de ressonância paramagnética eletrônica (RPE) e Mössbauer. Os óxidos produzidos contêm titânio(IV) e ferro(III) (ou ferro(II)), dependendo das condições de reação e das temperaturas de tratamento térmico. Uma interessante redução de ferro(III) a ferro(II), que levou à obtenção de ilmenita (FeTiO3), foi observada a 1000 ºC no sistema contendo HNO3. Estudos por MEV/EDS revelaram uma distribuição altamente heterogênea dos metais em todos os produtos, possivelmente relacionada com a presença de um conteúdo significativo de carbono e de defeitos estruturais (vacâncias de oxigênio) nos sólidos.Biotechnology and Biological Sciences Research Council (BBSRC) U

    Poly(dimethylsiloxane) as a pre-coating in layer-by-layer films containing phosphotungstate nanoclusters electrochemically sensitive toward s-triazines

    Get PDF
    One of the major advantages of the Layer-by-Layer (LbL) deposition technique is the possible control of molecular architecture, not only to achieve optimized properties but also to seek synergy among different materials. In this study, LbL films containing nanoclusters of a Keggin type polyoxometalate, phosphotungstic acid (HPW), alternated with the polycation poly(allylamine hydrochloride) (PAH) were deposited on indium-tin oxide (ITO) substrates. The electrochemical properties of the hybrid LbL film investigated in acidic conditions indicated no significant desorption of HPW, when a layer of poly(dimethylsiloxane) terminated with 3-aminopropyl groups (PDMS) was previously deposited on the ITO substrate. Such effect occurred because PDMS prevents desorption of HPW from the hybrid film, as shown by X-ray Photoelectron Spectroscopy (XPS) analyses. The porous structures of the films were revealed by Fourier transform infrared reflection absorption spectroscopy, scanning electron microscopy and XPS. PDMS/PAH as a pre-coating allowed the HPW/PAH films to be sensitive to the electrochemical detection of the triazines atrazine and melamine. In conclusion, the precise control of the LbL films architecture is important to develop opportunities for new applications. © 2014 The Royal Society of Chemistry.One of the major advantages of the Layer-by-Layer (LbL) deposition technique is the possible control of molecular architecture, not only to achieve optimized properties but also to seek synergy among different materials. In this study, LbL films containin4562961229621FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORsem informaçãosem informaçãosem informaçãoDecher, G., (1997) Science, 277, p. 1232Stockton, W.B., Rubner, M.F., (1997) Macromolecules, 30, p. 2717Shimazaki, Y., Mitsuishi, M., Ito, S., Yamamoto, M., (1997) Langmuir, 13, p. 1385Kohli, P., Blanchard, G.J., (2000) Langmuir, 16, p. 8518Anzai, J., Kobayashi, Y., (2000) Langmuir, 16, pp. 2851-2856Shi, X., Shen, M., Mohwald, H., (2004) Prog. Polym. Sci., 29, p. 987Zucolotto, V., Ferreira, M., Cordeiro, M.R., Constantino, C.J.L., Moreira, W.C., Oliveira Jr., O.N., (2006) Sens. Actuators, B, 113, p. 809Alexeyeva, N., Tammeveski, K., (2008) Anal. Chim. Acta, 618, p. 140Liu, S., Volkmer, D., Kurth, D.G., (2003) J. Cluster Sci., 14, p. 405Kuhn, A., Mano, N., Vidal, C., (1999) J. Electroanal. Chem., 462, p. 187Cherstiouk, O.V., Simonov, A.N., Tsirlina, G.A., (2012) Electrocatalysis, 3, p. 230Lu, M., Lee, D., Xue, W., Cui, T., (2009) Sens. Actuators, A, 150, p. 280Han, B.H., Manners, I., Winnik, M.A., (2005) Chem. Mater., 17, p. 3160Perinotto, A.C., Caseli, L., Hayasaka, C.O., Riul Jr., A., Oliveira Jr., O.N., Zucolotto, V., (2008) Thin Solid Films, 516, p. 9002Moraes, M.L., De Souza, N.C., Hayasaka, C.O., Ferreira, M., Rodrigues-Filho, U.P., Riul Jr., A., Zucolotto, V., Oliveira Jr., O.N., (2009) Mater. Sci. Eng., C, 29, p. 442Liu, S., Mohwald, H., Volkmer, D., Kurth, D.G., (2006) Langmuir, 22, p. 1949Katsoulis, D.E., (1998) Chem. Rev., 98, p. 359Papaconstantinuou, E., (1989) Chem. Soc. Rev., 18, p. 1Timofeeva, M.N., (2003) Appl. Catal., A, 256, p. 19Sadakane, M., Steckhan, E., (1998) Chem. Rev., 98, p. 219Yamase, T., (1998) Chem. Rev., 98, p. 307De Oliveira Jr., M., Lopes De Souza, A., Schneider, J., Pereira Rodrigues-Filho, U., (2011) Chem. Mater., 23, p. 953Ferreira-Neto, E.P., De Carvalho, F.L.S., Ullah, S., Zoldan, V.C., Pasa, A.A., De Souza, A.L., Battirola, L.C., Rodrigues Filho, U.P., (2013) J. Sol-Gel Sci. Technol., 66, p. 363Souza, A.L., Marques, L.A., Eberlin, M.N., Nascente, P.A.P., Herrmann Jr., P.S.P., Leite, F.L., Rodrigues-Filho, U.P., (2012) Thin Solid Films, 520, p. 3574Liu, S., Tang, Z., (2010) Nano Today, 5, p. 267Dong, T., Ma, H., Zhang, W., Gong, L., Wang, F., Li, C., (2007) J. Colloid Interface Sci., 311, p. 523Ma, H., Dong, T., Wang, F., Zhang, W., Zhou, B., (2006) Electrochim. Acta, 51, p. 4965Cheng, L., Cox, J.A., (2002) Chem. Mater., 14, p. 6Gu, Y., Ma, H., O'Halloran, K.P., Shi, S., Zhang, Z., Wang, X., (2009) Electrochim. Acta, 54, p. 7194Kulesza, P.J., Chojak, M., Karnicka, K., Miecznikowski, K., Palys, B., Lewera, A., Wieckowski, A., (2004) Chem. Mater., 16, p. 4128Ernst, A.Z., Zoladek, S., Wiaderek, K., Cox, J.A., Kolary-Zurowska, A., Miecznikowski, K., Kulesza, P.J., (2008) Electrochim. Acta, 53, p. 3924Sun, L., Ca, D.V., Cox, J.A., (2005) J. Solid State Electrochem., 9, p. 816Liu, S., Kurth, D.G., Bredenkotter, B., Volkmer, D., (2002) J. Am. Chem. Soc., 124, p. 12279Cheng, L., Cox, J.A., (2001) Electrochem. Commun., 3, p. 285Feng, Y., Han, Z., Peng, J., Lu, J., Xue, B., Li, L., Ma, H., Wang, E., (2006) Mater. Lett., 60, p. 1588Xu, B., Xu, L., Gao, G., Jin, Y., (2007) Appl. Surf. Sci., 253, p. 3190Cheng, L., Dong, S., (2000) J. Electrochem. Soc., 147, p. 606Fernandes, D.M., Carapuça, H.M., Brett, C.M.A., Cavaleiro, A.M.V., (2010) Thin Solid Films, 518, p. 5881Cheng, L., Dong, S., (2000) J. Electroanal. Chem., 481, p. 168Liu, S., Volkmer, D., Kurth, D.G., (2004) Anal. Chem., 76, p. 4579Sosnowska, M., Goral-Kurbiel, M., Skunik-Nuckowska, M., Jurczakowski, R., Kulesza, P.J., (2013) J. Solid State Electrochem., 17, p. 1631Layla Mehdi, B., Rutkowska, I.A., Kulesza, P.J., Cox, J.A., (2013) J. Solid State Electrochem., 17, p. 1581Shiu, K.-K., Anson, F.C., (1991) J. Electroanal. Chem., 309, p. 115Martel, D., Kuhn, A., (2000) Electrochim. Acta, 45, p. 1829Chan, Z.C.Y., Lai, W.-F., (2009) Trends Food Sci. Technol., 20, p. 366Gammon, D.W., Aldous, C.N., Carr Jr., W.C., Sanborn, J.R., Pfeifer, K.F., (2005) Pest Manage. Sci., 61, p. 331Yu, J., Zhang, C., Dai, P., Ge, S., (2009) Anal. Chim. Acta, 651, p. 209Shoji, R., Takeuchi, T., Kubo, I., (2003) Anal. Chem., 75, p. 4882Donley, C., Dunphy, D., Paine, D., Carter, C., Nebesny, K., Lee, P., Alloway, D., Armstrong, N.R., (2002) Langmuir, 18, p. 450Sawyer, D.T., Sobkowiak, A., Roberts Jr., J.L., (1995) Electrochemistry for Chemists, pp. 68-78. , John Wiley & Sons, New York, 2nd edn, ch. 3Beamson, G., Briggs, D., (1992) High Resolution of XPS of Organic Polymers: The Scienta ESCA 300 Database, , John Wiley & Sons, ChichesterPope, M.T., Varga Jr., G.M., (1966) Inorg. Chem., 5, p. 1249Keita, B., Nadjo, L., (1987) J. Electroanal. Chem., 227, p. 77Stotter, J., Show, Y., Wang, S., Swain, G., (2005) Chem. Mater., 17, p. 4880Senthilkumar, M., Mathiyarasu, J., Joseph, J., Phani, K.L.N., Yegnaraman, V., (2008) Mater. Chem. Phys., 108, p. 403Vanleugenhague, C., Pourbaix, M., (1966) Atlas of Electrochemical Equilibra in Aqueous Solution, pp. 436-442. , ed. M. Pourbaix, Pergamon Press, OxfordDeltombe, E., De Zoubov, N., Vanleugenhague, C., Pourbaix, M., (1966) Atlas of Electrochemical Equilibra in Aqueous Solution, pp. 475-484. , ed. M. Pourbaix, Pergamon Press, OxfordPope, M.T., (1987) Comprehensive Coordination Chemistry, 3, p. 1039. , ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Plenum Press, New YorkAkhtar, M.S., Cheralathan, K.K., Chun, J.M., Yang, O.B., (2008) Electrochim. Acta, 53, p. 6623Oliveira, F.C., Schneider, J., Siervo, A., Landers, R., Plepis, A.M.G., Pireaux, J.J., Rodrigues-Filho, U.P., (2002) Surf. Interface Anal., 34, p. 580Zhang, L., Jin, Q., Huang, J., Liu, Y., Shan, L., Wang, X., (2010) Appl. Surf. Sci., 256, p. 5911(2011) X-Ray Photoelectron Spectroscopy Database, Standard Database 20, Version 3.5, , http://srdata.nist.gov/xps/Version_his.aspxNunes De Carvalho, C., Botelho Do Rego, A.M., Amaral, A., Brogueira, P., Lavareda, G., (2000) Surf. Coat. Technol., 124, p. 70Lourenço, J.M.C., Ribeiro, P.A., Botelho Do Rego, A.M., Braz Fernandes, F.M., Moutinho, A.M.C., Raposo, M., (2004) Langmuir, 20, p. 8103Liu, Y.T., Deng, J., Xiao, X.L., Ding, L., Yuan, Y.L., Li, H., Li, X.T., Wang, L.L., (2011) Electrochim. Acta, 56, p. 4595Liao, C.W., Chen, Y.-R., Chang, J.-L., Zen, J.-M., (2011) J. Agric. Food Chem., 59, p. 9782Akter, H., Shaikh, A.A., Chowdhury, T.R., Rahmam, M.S., Bakshi, P.K., Saleh Ahammad, A.J., (2013) ECS Electrochem. Lett., 2 (8), p. 13Tran, H.V., Yougnia, R., Reisberg, S., Piro, B., Serradji, N., Nguyen, T.D., Tran, L.D., Pham, M.C., (2012) Biosens. Bioelectron., 31, p. 62Norouzi, P., Larijani, B., Ganjali, M.R., Faridbod, F., (2012) Int. J. Electrochem. Sci., 7, p. 10414Xu, G., Zhang, H., Zhong, M., Zhang, T., Lu, X., Kan, X., (2014) J. Electroanal. Chem., 713, p. 112Pesavento, M., D'Agostino, G., Biesuz, R., Alberti, G., (2009) Electroanalysis, 21, p. 604Svorc, L., Rievaj, M., Bustin, D., (2013) Sens. Actuators, B, 181, p. 294This work was supported by FAPESP, CNPq, CAPES and Brazilian Network nBioNe

    Influence of substrate steps on the catalytic properties of Pt layers: the ethanol electrooxidation reaction

    No full text
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPThe ethanol oxidation reaction (EOR) is investigated on Pt/ Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the C-C bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.151738643870CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP142507/2007-52011/12566-3Tremiliosi-Filho, G., Gonzalez, E.R., Motheo, A.J., Belgsir, E.M., Leger, J.M., Lamy, C., (1998) J. Electroanal. Chem., 444, pp. 31-39Tereshchuk, P., Da Silva, J.L.F., (2012) J. Phys. Chem. C, 116, pp. 24695-24705Iwasita, T., Rasch, B., Cattaneo, E., Vielstich, W., (1989) Electrochim. Acta, 34, pp. 1073-1079Ren, H., Humbert, M.P., Menning, C.A., Chen, J.G., Shu, Y., Singh, U.G., Cheng, W.-C., (2010) Appl. Catal. A, 375, pp. 303-309Antolini, E., (2007) J. Power Sources, 170, pp. 1-12Xu, J.B., Zhao, T.S., Yang, W.W., Shen, S.Y., (2010) Int. J. Hydrogen Energy, 35, pp. 8699-8706Kristian, N., Wang, X., (2008) Electrochem. Commun., 10, pp. 12-15Wang, J., Yin, G., Wang, G., Wang, Z., Gao, Y., (2008) Electrochem. Commun., 10, pp. 831-834Wang, J., Yin, G., Liu, H., Li, R., Flemming, R.L., Sun, X., (2009) J. Power Sources, 194, pp. 668-673Kim, Y., Kim, H.J., Kim, Y.S., Choi, S.M., Seo, M.H., Kim, W.B., (2012) J. Phys. Chem. C, 116, pp. 18093-18100Chandler, B.D., Schabel, A.B., Blanford, C.F., Pignolet, L.H., (1999) J. Catal., 187, pp. 367-384Kuzume, A., Herrero, E., Feliu, J.M., Nichols, R.J., Schiffrin, D.J., (2004) J. Electroanal. Chem., 570, pp. 157-161Clavilier, J., El Achi, K., Rodes, A., (1990) Chem. Phys., 141, pp. 1-14Rodes, A., Elachi, K., Zamakhchari, M.A., Clavilier, J., (1990) J. Electroanal. Chem., 284, pp. 245-253Solla-Gulln, J., Rodrguez, P., Herrero, E., Aldaz, A., Feliu, J.M., (2008) Phys. Chem. Chem. Phys., 10, pp. 1359-1373Tereshchuk, P., Freire, R.L.H., Da Silva, J.L.F., (2014) RSC Adv., 4, pp. 9247-9254Li, M., Liu, P., Adzic, R.R., (2012) J. Phys. Chem. Lett., 3, pp. 3480-3485Xia, X.H., Liess, H.D., Iwasita, T., (1997) J. Electroanal. Chem., 437, pp. 233-240Del Colle, V., Berna, A., Tremiliosi, G., Herrero, E., Feliu, J.M., (2008) Phys. Chem. Chem. Phys., 10, pp. 3766-3773Lai, S.C.S., Koper, M.T.M., (2008) Faraday Discuss., 140, pp. 399-416Colmati, F., Tremiliosi, G., Gonzalez, E.R., Berna, A., Herrero, E., Feliu, J.M., (2009) Phys. Chem. Chem. Phys., 11, pp. 9114-9123Prieto, M.J., Tremiliosi, G., (2011) Electrochem. Commun., 13, pp. 527-529Prieto, M.J., Tremiliosi-Filho, G., (2013) Phys. Chem. Chem. Phys., 15, pp. 13184-13189Wang, Q., Sun, G.Q., Jiang, L.H., Xin, Q., Sun, S.G., Jiang, Y.X., Chen, S.P., Behm, R.J., (2007) Phys. Chem. Chem. Phys., 9, pp. 2686-2696Camara, G.A., Iwasita, T., (2005) J. Electroanal. Chem., 578, pp. 315-321Leung, H.L.-W., Chang, S.-C., Weaver, M.J., (1989) J. Electroanal. Chem. Interfacial Electrochem., 266, pp. 317-336Prieto, M.J., (2011) University of Suo PauloTobin, R.G., Phelps, R.B., Richards, P.L., (1987) Surf. Sci., 183, pp. 427-437Pastor, E., Rodriguez, J.L., Iwasita, T., (2002) Electrochem. Commun., 4, pp. 959-962Rodrguez, P., Garca, G., Herrero, E., Feliu, J., Koper, M.M., (2011) Electrocatalysis, 2, pp. 242-253Martin, R., Gardner, P., Bradshaw, A.M., (1995) Surf. Sci., 342, pp. 69-84Bare, S.R., Hofmann, P., King, D.A., (1984) Surf. Sci., 144, pp. 347-369Watanabe, S., Inukai, J., Ito, M., (1993) Surf. Sci., 293, pp. 1-9Yamagishi, S., Fujimoto, T., Inada, Y., Orita, H., (2005) J. Phys. Chem. B, 109, pp. 8899-8908Lpez-Cudero, A., Gutirrez, C., (2006) J. Electroanal. Chem., 586, pp. 204-216Iwasita, T., Pastor, E., (1994) Electrochim. Acta, 39, pp. 531-537De Souza, J.P.I., Queiroz, S.L., Bergamaski, K., Gonzalez, E.R., Nart, F.C., (2002) J Phys Chem. B, 106, pp. 9825-9830Gao, P., Chang, S.-C., Zhou, Z., Weaver, M.J., (1989) J. Electroanal. Chem. Interfacial Electrochem., 272, pp. 161-178Souza, J.P.I., Rabelo, F.J.B., De Moraes, I.R., Nart, F.C., (1997) J. Electroanal. Chem., 420, pp. 17-20Prieto, M.J., Filho, U.P.R., Landers, R., Tremiliosi-Filho, G., (2012) Phys. Chem. Chem. Phys., 14, pp. 599-606Mrozek, M.F., Xie, Y., Weaver, M.J., (2001) Anal. Chem., 73, pp. 5953-5960Jayaraju, N., Vairavapandian, D., Kim, Y.G., Banga, D., Stickney, J.L., (2012) J. Electrochem. Soc., 159, pp. D616-D622Iwasita, T., Nart, F.C., (1997) Prog. Surf. Sci., 55, pp. 271-34

    Thermally induced chemical evolution in polyimide films investigated by X ray photoelectron spectroscopy

    Get PDF
    Thermally modified polyimide films based on 1,4-Phenylene diamine (p-PDA) and 3,3,4,4 - Benzophenone tetracarboxylic dianhydride (BTDA) were prepared and their chemical structure transformation after thermal treatment at 350 degrees C-500 degrees C was investigated. X-ray diffraction results revealed an increase in the polymer chain order for all treated PI samples as a consequence of the thermal treatment and chain interaction. TGA analysis showed that the heat treatment promoted different thermal degradation profiles. Electron spin resonance evidenced a large population of free radicals as a result of homogeneous bond cleavage when the thermal treatment was performed at 500 degrees C. X-ray photoelectron spectroscopy analysis indicated that the chemical structure transformation not only occurs on the outer surface but also in the sub-surface layer. These results show that controlled fast thermal treatment can produce materials with specific characteristics and may serve as a general strategy for changing both structural and chemical properties of the polymers. POLYM. ENG. SCI., 58:943-951, 2018. (c) 2017 Society of Plastics Engineer
    corecore