6,141 research outputs found

    Quantum non-Gaussianity witnesses in the phase space

    Get PDF
    We address detection of quantum non-Gaussian states, i.e. nonclassical states that cannot be expressed as a convex mixture of Gaussian states, and present a method to derive a new family of criteria based on generic linear functionals. We then specialise this method to derive witnesses based on ss-parametrized quasiprobability functions, generalising previous criteria based on the Wigner function. In particular we discuss in detail and analyse the properties of Husimi Q-function based witnesses and prove that they are often more effective than previous criteria in detecting quantum non-Gaussianity of various kinds of non-Gaussian states evolving in a lossy channel.Comment: 9 pages, 6 figure

    Chopped random-basis quantum optimization

    Get PDF
    In this work we describe in detail the "Chopped RAndom Basis" (CRAB) optimal control technique recently introduced to optimize t-DMRG simulations [arXiv:1003.3750]. Here we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.Comment: 9 pages, 10 figure

    The chemical evolution of self-gravitating primordial disks

    Full text link
    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular during the formation of Pop.~III and supermassive stars. Their subsequent evolution is expected to be crucial to determine the mass scale of the first cosmological objects, which depends on the temperature of the gas and the dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of such disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M_sun (10^4 M_sun) at an accretion rate of 10^{-1} M_sun yr^{-1}, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution, and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects, such as the progenitors of the first supermassive black holes. The stabilizing impact of viscous heating thus alleviates the need for a strong radiation background as a means of keeping the gas atomic.Comment: 13 pages, 5 figures, 6 tables, accepted at A&

    Optimal Phonon-to-Spin Mapping in a system of a trapped ion

    Full text link
    We propose a protocol for measurement of the phonon number distribution of a harmonic oscillator based on selective mapping to a discrete spin-1/2 degree of freedom. We consider a system of a harmonically trapped ion, where a transition between two long lived states can be driven with resolved motional sidebands. The required unitary transforms are generated by amplitude-modulated polychromatic radiation fields, where the time-domain ramps are obtained from numerical optimization by application of the Chopped RAndom Basis (CRAB) algorithm. We provide a detailed analysis of the scaling behavior of the attainable fidelities and required times for the mapping transform with respect to the size of the Hilbert space. As one application we show how the mapping can be employed as a building block for experiments which require measurement of the work distribution of a quantum process

    A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Full or Dead-Coil Multiphase Windings

    Get PDF
    This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Görges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum values of the differential leakage factor, as well as its average value and the time trend. The proposed method, which does not require infinite series, is validated by means of several examples in order to practically demonstrate the effectiveness and the easiness of application of this procedure

    A chemical model for the interstellar medium in galaxies

    Full text link
    We present and test chemical models for three-dimensional hydrodynamical simulations of galaxies. We explore the effect of changing key parameters such as metallicity, radiation and non-equilibrium versus equilibrium metal cooling approximations on the transition between the gas phases in the interstellar medium. The microphysics is modelled by employing the public chemistry package KROME and the chemical networks have been tested to work in a wide range of densities and temperatures. We describe a simple H/He network following the formation of H2_2, and a more sophisticated network which includes metals. Photochemistry, thermal processes, and different prescriptions for the H2_2 catalysis on dust are presented and tested within a one-zone framework. The resulting network is made publicly available on the KROME webpage. We find that employing an accurate treatment of the dust-related processes induces a faster HI--H2_2 transition. In addition, we show when the equilibrium assumption for metal cooling holds, and how a non-equilibrium approach affects the thermal evolution of the gas and the HII--HI transition. These models can be employed in any hydrodynamical code via an interface to KROME and can be applied to different problems including isolated galaxies, cosmological simulations of galaxy formation and evolution, supernova explosions in molecular clouds, and the modelling of star-forming regions. The metal network can be used for a comparison with observational data of CII 158 ÎĽ\mum emission both for high-redshift as well as for local galaxies.Comment: A&A accepte

    Robust optimal quantum gates for Josephson charge qubits

    Get PDF
    Quantum optimal control theory allows to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors of the order of 10^{-3}-10^{-4} in realistic cases) allows to cross the fault tolerance threshold.Comment: 4 pages, 4 figure
    • …
    corecore