146 research outputs found

    Technical Note: Could benzalkonium chloride be a suitable alternative to mercuric chloride for preservation of seawater samples?

    Get PDF
    Instrumental equipment unsuitable or unavailable for fieldwork as well as lack of ship space can necessitate the preservation of seawater samples prior to analysis in a shore-based laboratory. Mercuric chloride (HgCl2) is routinely used for such preservation, but its handling and subsequent disposal incur environmental risks and significant expense. There is therefore a strong motivation to find less hazardous alternatives. Benzalkonium chloride (BAC) has been used previously as microbial inhibitor for freshwater samples. Here, we assess the use of BAC for marine samples prior to the measurement of oxygen-to-argon (O2 / Ar) ratios, as used for the determination of biological net community production. BAC at a concentration of 50 mg dmāˆ’3 inhibited microbial activity for at least 3 days in samples tested with chlorophyll a (Chl a) concentrations up to 1 mg māˆ’3. BAC concentrations of 100 and 200 mg dmāˆ’3 were no more effective than 50 mg dmāˆ’3 . With fewer risks to human health and the environment, and no requirement for expensive waste disposal, BAC could be a viable alternative to HgCl2 for short-term preservation of seawater samples, but is not a replacement for HgCl2 in the case of oxygen triple isotope analysis, which requires storage over weeks to months. In any event, further tests on a case-by-case basis should be undertaken if use of BAC was considered, since its inhibitory activity may depend on concentration and composition of the microbial community

    Earth observation tool for monitoring coastal eutrophication

    Get PDF
    ISECA is an Interreg project running until September 2014 that aims to advance and disseminate scientific knowledge related to eutrophication in the 2Seas area (English Channel and North Sea).The main objective of ISECA is to develop a demonstration prototype of an information system for monitoring eutrophication of coastal waters.This information system combines in-situ, satellite information and models outputs

    Comparison of Above-Water Seabird and TriOS Radiometers along an Atlantic Meridional Transect

    Get PDF
    The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project has carried out a range of activities to evaluate and improve the state-of-the-art in ocean color radiometry. This paper described the results from a ship-based intercomparison conducted on the Atlantic Meridional Transect 27 from 23rd September to 5th November 2017. Two different radiometric systems, TriOS-Radiation Measurement Sensor with Enhanced Spectral resolution (RAMSES) and Seabird-Hyperspectral Surface Acquisition System (HyperSAS), were compared and operated side-by-side over a wide range of Atlantic provinces and environmental conditions. Both systems were calibrated for traceability to SI (SystĆØme international) units at the same optical laboratory under uniform conditions before and after the field campaign. The in situ results and their accompanying uncertainties were evaluated using the same data handling protocols. The field data revealed variability in the responsivity between TRiOS and Seabird sensors, which is dependent on the ambient environmental and illumination conditions. The straylight effects for individual sensors were mostly within Ā±3%. A near infra-red (NIR) similarity correction changed the water-leaving reflectance (Ļw) and water-leaving radiance (Lw) spectra significantly, bringing also a convergence in outliers. For improving the estimates of in situ uncertainty, it is recommended that additional characterization of radiometers and environmental ancillary measurements are undertaken. In general, the comparison of radiometric systems showed agreement within the evaluated uncertainty limits. Consistency of in situ results with the available Sentinel-3A Ocean and Land Color Instrument (OLCI) data in the range from (400ā€¦560) nm was also satisfactory (-8% < Mean Percentage Difference (MPD) < 15%) and showed good agreement in terms of the shape of the spectra and absolute values

    Uncertainty in ocean-color estimates of chlorophyll for phytoplankton groups

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record.Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these products are of limited use unless: (i) the phytoplankton products provided by the remote-sensing community match those required by the ecosystem modelers; and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using a large dataset collected in the North Atlantic, we re-tune a method to estimate the chlorophyll concentration of three phytoplankton groups, partitioned according to size [pico- (20 Ī¼m)]. The method is modified to account for the influence of sea surface temperature, also available from satellite data, on model parameters and on the partitioning of microphytoplankton into diatoms and dinoflagellates, such that the phytoplankton groups provided match those simulated in a state of the art marine ecosystem model (the European Regional Seas Ecosystem Model, ERSEM). The method is validated using another dataset, independent of the data used to parameterize the method, of more than 800 satellite and in situ match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset is used to derive the root mean square error and the bias between in situ and satellite estimates of the chlorophyll for each phytoplankton group, for 14 different optical water types (OWT). These values are then used with satellite estimates of OWTs to map uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is envisaged these satellite products will be useful for those working on the validation of, and assimilation of data into, marine ecosystem models that simulate different phytoplankton groups.National Centre for Earth Observation (NCEO)European Space Agency (ESA)NERC-UK ECOMA

    Intravenous digoxin as a bioavailability standard

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116960/1/cpt1975171117.pd

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    This is the final version. Available on open access from Optical Society of America via the DOI in this recordMeasurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 māˆ’1 and a precision of about 0.0025 māˆ’1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.European Space Agency (ESA)National Atmospheric and Space Administration (NASA

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400ā€“450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 māˆ’1 and a precision of about 0.0025 māˆ’1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms

    Uncertainty in ocean-colour estimates of chlorophyll for phytoplankton groups

    Get PDF
    Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these products are of limited use unless: (i) the phytoplankton products provided by the remote-sensing community match those required by the ecosystem modelers; and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using a large dataset collected in the North Atlantic, we re-tune a method to estimate the chlorophyll concentration of three phytoplankton groups, partitioned according to size [pico- (20 Ī¼m)]. The method is modified to account for the influence of sea surface temperature, also available from satellite data, on model parameters and on the partitioning of microphytoplankton into diatoms and dinoflagellates, such that the phytoplankton groups provided match those simulated in a state of the art marine ecosystem model (the European Regional Seas Ecosystem Model, ERSEM). The method is validated using another dataset, independent of the data used to parameterize the method, of more than 800 satellite and in situ match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset is used to derive the root mean square error and the bias between in situ and satellite estimates of the chlorophyll for each phytoplankton group, for 14 different optical water types (OWT). These values are then used with satellite estimates of OWTs to map uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is envisaged these satellite products will be useful for those working on the validation of, and assimilation of data into, marine ecosystem models that simulate different phytoplankton groups

    Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel

    Get PDF
    The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5Ā°C) and pCO2 levels (800Ī¼atm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90% of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85% of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( āˆ¼ 40%). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased &gt; 6-fold under elevated pCO2 and &gt; 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC
    • ā€¦
    corecore