863 research outputs found
Ionization structure in the winds of B[e] supergiants: I. Ionization equilibrium calculations in a H plus He wind
The non-spherically symmetric winds of B[e] supergiants are investigated. An
empirical density distribution is chosen that accounts for the density
concentrations and ratios derived from observations, and our model winds are
assumed to contain only hydrogen and helium. We first calculate the approximate
ionization radii for H and He and compare the results with the ionization
fractions calculated from the more accurate ionization balance equations. We
find that winds with a r^-2 density distribution turn out to reach a constant
ionization fraction as long as the wind density is low, i.e. in polar
direction. For the high density equatorial regions, however, we find that the
winds become neutral just above the stellar surface of the hot and massive B[e]
supergiants forming a disk-like neutral region. In such a disk molecules and
dust can form even very near the hot central star.Comment: 11 pages, 8 figures, accepted for publication in A&
XPOL - the correlation polarimeter at the IRAM 30m telescope
XPOL, the first correlation polarimeter at a large millimeter telescope, uses
a flexible digital correlator to measure all four Stokes parameters
simultaneously, i.e. the total power I, the linear polarization components Q
and U, and the circular polarization V. The versatility of the backend provides
adequate bandwidth for efficient continuum observations as well as sufficient
spectral resolution (40 kHz) for observations of narrow lines. We demonstrate
that the polarimetry specific calibrations are handled with sufficient
precision, in particular the relative phase between the Observatory's two
orthogonally linearly polarized receivers. The many facets of instrumental
polarization are studied at 3mm wavelength in all Stokes parameters: on-axis
with point sources and off-axis with beam maps. Stokes Q which is measured as
the power difference between the receivers is affected by instrumental
polarization at the 1.5% level. Stokes U and V which are measured as cross
correlations are very little affected (maximum sidelobes 0.6% (U) and 0.3%
(V)). These levels critically depend on the precision of the receiver
alignment. They reach these minimum levels set by small ellipticities of the
feed horns when alignment is optimum (<~ 0.3"). A second critical prerequisite
for low polarization sidelobes turned out to be the correct orientation of the
polarization splitter grid. Its cross polarization properties are modeled in
detail. XPOL observations are therefore limited only by receiver noise in
Stokes U and V even for extended sources. Systematic effects set in at the 1.5%
level in observations of Stokes Q. With proper precautions, this limitation can
be overcome for point sources. Stokes Q observations of extended sources are
the most difficult with XPOL.Comment: 31 pages, accepted for publication by Publications of the
Astronomical Society of the Pacific on 2008/05/2
Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia
Background and aims:
Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L.
Methods:
We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method.
Results:
Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera.
Conclusions:
Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance
Spatially resolved origin of mm-wave linear polarization in the nuclear region of 3C 84
We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultra-high angular resolution of 50μas (corresponding to 250R). We also add complementary multi-wavelength data from the Very Long Baseline Array (VLBA; 15 & 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0, and 343.5 GHz). At 86 GHz, we measure a fractional linear polarization of ~ 2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (~ 0.3-0.7% and < 0.1%, respectively). This suggests an increasing linear polarization degree towards shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ~ 10⁵⁻⁶ rad/m² in the core at ≳43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution, and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.Accepted manuscrip
MicroRNA-24 regulates vascularity after myocardial infarction
BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease. [KEYWORDS: Animals, Apoptosis/drug effects, Arterioles/pathology, Capillaries/pathology, Cell Hypoxia, Cells, Cultured/drug effects/metabolism, Collagen, Drug Combinations, Drug Evaluation, Preclinical, Endothelial Cells/ metabolism/pathology, GATA2 Transcription Factor/biosynthesis/genetics, Gene Expression Profiling, Heart Failure/etiology, Heme Oxygenase-1/biosynthesis/genetics, Laminin, Male, Mice, Mice, Inbred C57BL, MicroRNAs/antagonists & inhibitors/genetics/ physiology, Myocardial Infarc
Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length
Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration
Expression of Xenobiotic Metabolizing Enzymes in Different Lung Compartments of Smokers and Nonsmokers
BACKGROUND: Cytochrome P450 monooxygenases (CYP) play an important role in the defense against inhaled toxicants, and expression of CYP enzymes may differ among various lung cells and tissue compartments. METHODS: We studied the effects of tobacco smoke in volunteers and investigated gene expression of 19 CYPs and 3 flavin-containing monooxygenases, as well as isoforms of gluthathione S-transferases (GST) and uridine diphosphate glucuronosyltransferases (UGT) and the microsomal epoxide hydrolase (EPHX1) in bronchoalveolar lavage cells and bronchial biopsies derived from smokers (n = 8) and nonsmokers (n = 10). We also investigated gene expression of nuclear transcription factors known to be involved in the regulation of xenobiotic metabolism enzymes. RESULTS: Gene expression of CYP1A1, CYP1B1, CYP2S1, GSTP1, and EPHX1 was induced in bronchoalveolar lavage cells of smokers, whereas expression of CYP2B6/7, CYP3A5, and UGT2A1 was repressed. In bronchial biopsies of smokers, CYP1A1, CYP1B1, CYP2C9, GSTP1, and GSTA2 were induced, but CYP2J2 and EPHX1 were repressed. Induction of CYP1A1 and CYP1B1 transcript abundance resulted in increased activity of the coded enzyme. Finally, expression of the liver X receptor and the glucocorticoid receptor was significantly up-regulated in bronchoalveolar lavage cells of smokers. CONCLUSIONS: We found gene expression of pulmonary xenobiotic metabolizing enzymes and certain key transcription factors to be regulated in bronchoalveolar lavage cells and bronchial biopsies of smokers. The observed changes demonstrate tissue specificity in xenobiotic metabolism, with likely implications for the metabolic activation of procarcinogens to ultimate carcinogens of tobacco smoke
- …