446 research outputs found

    Effects of experimental rewilding on butterflies, bumblebees and grasshoppers

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Grassland ecosystems are species-rich habitats that are rapidly declining globally posing serious concerns for biodiversity conservation. This situation is particularly relevant in agricultural areas in Europe. As traditional management practices and livestock grazing regimes ceased, rewilding could be a potential avenue to tackle current biodiversity declines. To test this hypothesis, we set up a 3-year experiment where 12 horses were introduced in three 10-hectare enclosure replicates (four horses per enclosure). Horses were kept without supplementary feeding to mimic ecosystem functions of wild horses. We applied Generalized Linear Mixed Effects Models and a backward stepwise model selection procedure to elucidate factors that modulate insect richness induced by grazing. Our results show that plant species richness, the proportion of flowers and plant height play a significant role for butterfly and bumblebee richness, while the opposite effect was detected for grasshoppers. However, the effect on grasshoppers was counterbalanced by increased grasshopper species richness in habitats adjacent to horse latrines. Rewilding with horses may offset current biodiversity declines by maintaining important functional links between plants and pollinators in grassland ecosystems. Horse grazing can however have different effects on diverse functional groups of insects. Application of integrative landscape scale approaches may be needed to elucidate the effects of rewilding for certain functional groups such as grasshoppers. With current biodiversity declines, up-scaling rewilding research and practice might be crucial to mitigate the pervasive effects on insects as their services and functions are critical for our existence.publishedVersio

    Transfer of fatty acids across the swine uterus and placenta

    Get PDF
    The transfer across the swine uterus and placenta of [1-14C] octanoic acid, [9,10(n)- H] palmitic acid, and [1- 14C] linoleic acid was studied in five gilts and their fetuses during late gestation, following a single bolus injection. Only trace amounts of labeled fatty acids were found in fetal plasma lipid. There were no measureable differences in free fatty acids (FFA) from umbilical artery, and veinous blood. Concentration of FFA in fetal blood was about 40% of the level of uterine values (187, 194, 73, and 82 µEg/1 for uterine artery, uterine vein, umbilical artery, and umbilical vein). In addition, fetal plasma contained larger amounts of 14:0, 16:1, 18:1, and 20:4, whereas maternal plasma contained larger amounts of 18:0 and 18:2. These results indicate that only trace amounts of FFA cross the swine utero-placental unit during late gestation, which are probably not enough to increase energy supply or lipid storage of the fetus.; Swine Day, Manhattan, KS, November 21, 198

    Correction due to finite speed of light in absolute gravimeters

    Full text link
    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 μ\muGal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we make an attempt to revise the subject. Like other authors, we use physical models based on signal delays and the Doppler effect, however, in implementing the models we additionally introduce two scales of time associated with moving and resting reflectors, derive a set of rules to switch between the scales, and establish the equivalence of trajectory distortions as obtained from either time delay or distance progression. The obtained results enabled us to produce accurate correction formulas for different types of instruments, and to explain the differences in the results obtained by other authors. We found that the correction derived from the Doppler effect is accountable only for 23\frac23 of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in Infants

    Get PDF
    Infant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown. Here, we define \u3e /=10% afucosylation of maternal anti-dengue IgGs as a risk factor for susceptibility of infants to symptomatic dengue infections. Mechanistic experiments show that afucosylation of anti-dengue IgGs promotes FcgammaRIIIa signaling during infection, in turn enhancing dengue virus replication in FcgammaRIIIa(+) monocytes. These studies identify a post-translational modification of anti-dengue IgGs that correlates with risk for symptomatic infant dengue infections and define a mechanism by which afucosylated antibodies and FcgammaRIIIa enhance dengue infections

    Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)

    Get PDF
    The occurrence ofAnaplasma phagocytophilumwas investigated in spleen and serum samplesfrom Swedish moose (Alces alces) in southern Sweden (island and mainland). Samples wereanalysed for presence ofA. phagocytophilumDNA by real-time PCR (n=263), and forAnaplasmaantibodies with ELISA serology (n=234). All serum samples had antibodies againstA. phagocytophilum. The mean DNA-based prevalence was 26·3%, and significant (

    Enhanced Platelet Activation Mediates the Accelerated Angiogenic Switch in Mice Lacking Histidine-Rich Glycoprotein

    Get PDF
    BACKGROUND: The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-deficient mice. METHODOLOGY/PRINCIPAL FINDINGS: To address whether HRG deficiency affects tumor development, we have crossed HRG knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2 HRG(-/-) mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG(+/+) littermates, supporting a role for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic switch by injection of the anti-platelet antibody GP1bα. Interestingly, this treatment suppressed the increase in angiogenic neoplasias seen in HRG knockout mice. However, if GP1bα treatment was initiated at a later stage, after the onset of the angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice. CONCLUSIONS: Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less significance for tumor growth once angiogenesis has been initiated

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Reticulate evolution: frequent introgressive hybridization among chinese hares (genus lepus) revealed by analyses of multiple mitochondrial and nuclear DNA loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interspecific hybridization may lead to the introgression of genes and genomes across species barriers and contribute to a reticulate evolutionary pattern and thus taxonomic uncertainties. Since several previous studies have demonstrated that introgressive hybridization has occurred among some species within <it>Lepus</it>, therefore it is possible that introgressive hybridization events also occur among Chinese <it>Lepus </it>species and contribute to the current taxonomic confusion.</p> <p>Results</p> <p>Data from four mtDNA genes, from 116 individuals, and one nuclear gene, from 119 individuals, provides the first evidence of frequent introgression events via historical and recent interspecific hybridizations among six Chinese <it>Lepus </it>species. Remarkably, the mtDNA of <it>L. mandshuricus </it>was completely replaced by mtDNA from <it>L. timidus </it>and <it>L. sinensis</it>. Analysis of the nuclear DNA sequence revealed a high proportion of heterozygous genotypes containing alleles from two divergent clades and that several haplotypes were shared among species, suggesting repeated and recent introgression. Furthermore, results from the present analyses suggest that Chinese hares belong to eight species.</p> <p>Conclusion</p> <p>This study provides a framework for understanding the patterns of speciation and the taxonomy of this clade. The existence of morphological intermediates and atypical mitochondrial gene genealogies resulting from frequent hybridization events likely contribute to the current taxonomic confusion of Chinese hares. The present study also demonstrated that nuclear gene sequence could offer a powerful complementary data set with mtDNA in tracing a complete evolutionary history of recently diverged species.</p
    corecore