124 research outputs found

    Origin of spatial organization of DNA-polymer in bacterial chromosomes

    Full text link
    In-vivo DNA organization at large length scales (100nm\sim 100nm) is highly debated and polymer models have proved useful to understand the principle of DNA-organization. Here, we show that <2<2% cross-links at specific points in a ring polymer can lead to a distinct spatial organization of the polymer. The specific pairs of cross-linked monomers were extracted from contact maps of bacterial DNA. We are able to predict the structure of 2 DNAs using Monte Carlo simulations of the bead-spring polymer with cross-links at these special positions. Simulations with cross-links at random positions along the chain show that the organization of the polymer is different in nature from the previous case.Comment: arXiv admin note: text overlap with arXiv:1701.0506

    Management of post-partum haemorhage at tertiary care center

    Get PDF
    Background: In developing countries like India post-partum haemorrhage (PPH) contributes to 35% of all maternal deaths and 239 per 1,00,000 deaths. So, PPH is a high-risk condition which increases maternal morbidities and mortalities. Hence it mandates a multidisciplinary approach. Audit of misses and near misses helps to determine causes of maternal morbidity and mortality and identify gaps in care. Aim of the study was to study conservative and definitive management of PPH. Methods: A retrospective analysis of all patients who has undergone PPH and also cases who referred from outside with PPH in department of obstetrics and gynaecology at civil hospital Ahmedabad from January 2021 to January 2022. Results: Out of 6029 deliveries there were 171 cases of PPH (2.8%). Which of 150 cases (87.7%) managed by conservative management (uterine conserving) and 21 (12.3%) cases were required definitive management (hysterectomy) due to failure of conservative management. Out of all cases 78.8% cases of PPH were due to atonicity of uterus and 19.1% cases were due to traumatic cause. Early recourse to hysterectomy was recommended especially where bleeding is associated with morbidly adherent placenta. Conclusions: PPH is an important cause of morbidity and mortality. We now have more options for conservative management which can greatly reduce its sequelae and more importantly in patients with wider issues of reproductive health. But in case of intractable bleeding and non-responsive by conservative management definitive management (Hysterectomy) is life saving and last resource

    Shape from Sound: Toward New Tools for Quantum Gravity

    Get PDF
    To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric’s degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra

    Adiantum philippense

    Get PDF
    Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications

    Concurrent pulmonary zygomycosis and Mycobacterium tuberculosis infection: a case report

    Get PDF
    A non-smoking 77-year old gentleman of Indian origin was admitted with a 4-month history of intermittent night sweats, haemoptysis and 6 kg of weight loss. CT scan of thorax demonstrated a 2.5 cm mass in the right middle lobe with multiple small nodules within the right lung and confirmed the presence of mediastinal and hilar lymph nodes

    Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications

    Get PDF
    Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems
    corecore