890 research outputs found

    MRI Guided Interventions needs new materials and contrast agents

    Get PDF
    Abstract Magnetic resonance imaging (MRI) is primary a diagnostic tool, with or without the use of contrast agents. To enable the use of MRI for interventional purposes, devices are needed that are nonmagnetic and non-conductive and visible in MRI. Fiber-composite materials provide enough strength to replace classic metal-based devices, and at the same time provide opportunity to include contrast agents as part of the matrix. Gadolinium chelates are clinically being used ad contrast agents by delivery into the vascular space, and then diffusing into the site (tumor, scar, vessel) of interest, Apart from incomplete diffusion, they are rapidly washed out of the site, and some gadolinium chelates cause specific renal toxicity Porphyrins are potential MR contrast agents, considering their stable form within chelate complexes that comprises paramagnetic metal ions and their retention by the site selectively The present study aims to evaluate the site enhancing imaging characteristics of novel metalloporphyrin derivatives. In this project we investigate the MRI characteristics of metalloporphyrin derivatives as potential biocompatible MR contrast agent. However, to enable this several technical issues have to be resolved. Hemin is sparingly soluble in aqueous media. Therefore, derivatives of Hemin have been processed for enhancing the solubility as PEGylated Hemin, Hemin Arginate or Hemin Lysinate. This new contrast agent has achieved a high molar Relaxivity in MRI allowing decrease of the required dose for in vivo applications. These derivatives suggest that the size, geometry, and polarity of hemin can be modified to optimize their relaxivities ,pharmacokinetic properties, and biocompatibility

    Master Equation for Retrodiction of Quantum Communication Signals

    Get PDF
    We derive the master equation that governs the evolution of the measured state backwards in time in an open system. This allows us to determine probabilities for a given set of preparation events from the results of subsequent measurements, which has particular relevance to quantum communication.Comment: 14 pages, no figure

    Transcranial magnetic stimulation in sport science: a commentary

    Get PDF
    The aim of this commentary is to provide a brief overview of transcranial magnetic stimulation (TMS) and highlight how this technique can be used to investigate the acute and chronic responses of the central nervous system to exercise. We characterise the neuromuscular responses to TMS and discuss how these measures can be used to investigate the mechanisms of fatigue in response to locomotor exercise. We also discuss how TMS might be used to study the corticospinal adaptations to resistance exercise training, with particular emphasis on the responses to shortening/lengthening contractions and contralateral training. The limited data to date suggest that TMS is a valuable technique for exploring the mechanisms of central fatigue and neural adaptation

    Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases

    Get PDF
    BACKGROUND: Brain tumor surgery is limited by the risk of postoperative neurological deficits. Intraoperative neurophysiological examination techniques, which are based on the electrical excitability of the human brain cortex, are thus still indispensable for surgery in eloquent areas such as the primary motor cortex (Brodman Area 4). METHODS: This study analyzed the data obtained from a total of 255 cerebral interventions for lesions with direct contact to (121) or immediately adjacent to (134) Brodman Area 4 in order to optimize stimulation parameters and to search for direct correlation between intraoperative potential changes and specific surgical maneuvers when using monopolar cortex stimulation (MCS) for electrocortical mapping and continuous intraoperative neurophysiological monitoring. RESULTS: Compound muscle action potentials (CMAPs) were recorded from the thenar muscles and forearm flexors in accordance with the large representational area of the hand and forearm in Brodman Area 4. By optimizing the stimulation parameters in two steps (step 1: stimulation frequency and step 2: train sequence) MCS was successful in 91% (232/255) of the cases. Statistical analysis of the parameters latency, potential width and amplitude showed spontaneous latency prolongations and abrupt amplitude reductions as a reliable warning signal for direct involvement of the motor cortex or motor pathways. CONCLUSION: MCS must be considered a stimulation technique that enables reliable qualitative analysis of the recorded potentials, which may thus be regarded as directly predictive. Nevertheless, like other intraoperative neurophysiological examination techniques, MCS has technical, anatomical and neurophysiological limitations. A variety of surgical and non-surgical influences can be reason for false positive or false negative measurements

    Techonolgy of Qualea grandiflora Mart. (Vochysiaceae) seeds

    Get PDF
    Qualea grandiflora Mart. (Vochysiaceae), commonly known as "pau-terra", is an arborous species native to the Brazilian savannah which possess commercial interests, as it can be used either as an ornamental or as a medicinal plant. "Pau-terra" can also be used in the heterogeneous reforestation of areas which are destined for restoration of permanent preservation degraded areas. Propagation studies with this species are scarce, being necessary then further clarification regarding the factors that influences the germination process. In this context, the objective of this work was to evaluate the influence of different temperatures, substrates and light conditions on seed germination. We selected light brown seeds which were subjected to different interactions between temperatures (15-25, 20-30, 25 and 30°C), substrate (paper, sand and vermiculite) and light (light and dark). All seeds were later dry-incubated at 32°C for 3, 6 and 12 hours. After treatments, seeds were kept in BOD at 58% RH and the following parameters were calculated: germination (%G) and germination speed index (GSI); the formation of normal and abnormal seedlings and the number dead seeds. Interaction was observed for all variables. In the optimum temperature range, the seeds behaved as photoblastic neutral or indifferent. Under alternating temperatures, darkness enhanced the germination, especially when combined with the lower temperatures. We noted that the sowing in sand, at 25°C, allowed the maintenance of suitable combinations of germination and seedling development. With respect to desiccation tolerance, "pau-terra" seeds presented an orthodox behavior, with a linear increase of the vigor as function of drying

    Theoretical study of the electronic spectra of small molecules that incorporate analogues of the copper-cysteine bond

    Get PDF
    The copper-sulphur bond which binds cysteinate to the metal centre is a key factor in the spectroscopy of blue copper proteins. We present theoretical calculations describing the electronically excited states of small molecules, including CuSH, CuSCH_3, (CH_3)_2SCuSH, (imidazole)-CuSH and (imidazole)_2-CuSH, derived from the active site of blue copper proteins that contain the copper-sulphur bond in order to identify small molecular systems that have electronic structure that is analogous to the active site of the proteins. Both neutral and cationic forms are studied, since these represent the reduced and oxidised forms of the protein, respectively. For CuSH and CuSH^+, excitation energies from time-dependent density functional theory with the B97-1 exchange-correlation functional agree well with the available experimental data and multireference configuration interaction calculations. For the positive ions, the singly occupied molecular orbital is formed from an antibonding combination of a 3d orbital on copper and a 3pπ orbital on sulphur, which is analogous to the protein. This leads several of the molecules to have qualitatively similar electronic spectra to the proteins. For the neutral molecules, changes in the nature of the low lying virtual orbitals leads the predicted electronic spectra to vary substantially between the different molecules. In particular, addition of a ligand bonded directly to copper results in the low-lying excited states observed in CuSH and CuSCH_33 to be absent or shifted to higher energies
    • …
    corecore