887 research outputs found

    The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells

    Get PDF
    The heavy and light chains of botulinum A toxin were separated by anion exchange chromatography. Their intracellular actions were studied using bovine adrenal chromaffin cells permeabilized with streptolysin O. Purified light chain inhibited the Ca2+-stimulated [3H]noradrenaline release with a half-maximal effect at about 1.8 nM. The inhibition was incomplete. Heavy chain up to 28 nM was neither effective by itself nor did it enhance the inhibitory effect of light chain. It is concluded that the light chain of botulinum A toxin contains the functional domain responsible for the inhibition of exocytosis

    Amylase release from streptolysin O-permeabilized pancreatic acinar cells. Effects of Ca2+, guanosine 5'-[gamma-thio]triphosphate, cyclic AMP, tetanus toxin and botulinum A toxin

    Get PDF
    The molecular requirements for amylase release and the intracellular effects of botulinum A toxin and tetanus toxin on amylase release were investigated using rat pancreatic acinar cells permeabilized with streptolysin O. Micromolar concentrations of free Ca2+ evoked amylase release from these cells. Maximal release was observed in the presence of 30 microM free Ca2+. Ca(2+)-stimulated, but not basal, amylase release was enhanced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) (3-4 fold) or cyclic AMP (1.5-2 fold). Neither the two-chain forms of botulinum A toxin and tetanus toxin, under reducing conditions, nor the light chains of tetanus toxin, inhibited amylase release triggered by Ca2+, or combinations of Ca2+ + GTP[S] or Ca2+ + cAMP. The lack of inhibition was not due to inactivation of botulinum A toxin or tetanus toxin by pancreatic acinar cell proteolytic enzymes, as toxins previously incubated with permeabilized pancreatic acinar cells inhibited Ca(2+)-stimulated [3H]noradrenaline release from streptolysin O-permeabilized adrenal chromaffin cells. These data imply that clostridial neurotoxins inhibit a Ca(2+)-dependent mechanism which promotes exocytosis in neural and endocrine cells, but not in exocrine cells

    Exocytosis from permeabilized bovine adrenal chromaffin cells is differently modulated by guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta gamma-imido]triphosphate

    Get PDF
    1. In bovine adrenal chromaffin cells made permeable either to molecules less than or equal to 3 kDa with alphatoxin or to proteins less than or equal to 150 kDa with streptolysin O, the GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) differently modulated Ca(2+)-stimulated exocytosis. 2. In alphatoxin-permeabilized cells, p[NH]ppG up to 20 microM activated Ca(2+)-stimulated exocytosis. Higher concentrations had little or no effect. At a free Ca2+ concentration of 5 microM, 7 microM-p[NH]ppG stimulated exocytosis 6-fold. Increasing the free Ca2+ concentration reduced the effect of p[NH]ppG. Pretreatment of the cells with pertussis toxin prevented the activation of the Ca(2+)-stimulated exocytosis by p[NH]ppG. 3. In streptolysin O-permeabilized cells, p[NH]ppG did not activate, but rather inhibited Ca(2+)-dependent catecholamine release under all conditions studied. In the soluble cytoplasmic material that escaped during permeabilization with streptolysin O, different G-protein alpha-subunits were detected using an appropriate antibody. Around 15% of the cellular alpha-subunits were detected in the supernatant of permeabilized control cells. p[NH]ppG or GTP[S] stimulated the release of alpha-subunits 2-fold, causing a loss of about 30% of the cellular G-protein alpha-subunits under these conditions. Two of the alpha-subunits in the supernatant belonged to the G(o) type, as revealed by an antibody specific for G(o) alpha. 4. GTP[S], when present alone during stimulation with Ca2+, activated exocytosis in a similar manner to p[NH]ppG. Upon prolonged incubation, GTP[S], in contrast to p[NH]ppG, inhibited Ca(2+)-induced exocytosis from cells permeabilized by either of the pore-forming toxins. This effect was resistant to pertussin toxin. 5. The p[NH]ppG-induced activation of Ca(2+)-stimulated release from alphatoxin-permeabilized chromaffin cells may be attributed to one of the heterotrimeric G-proteins lost during permeabilization with streptolysin O. The inhibitory effect of GTP[S] on exocytosis is apparently not mediated by G-protein alpha-subunits, but by another GTP-dependent process still occurring after permeabilization with streptolysin O

    Double Quantum Dots in Carbon Nanotubes

    Full text link
    We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit coupling. Exact calculation are combined with a simple model to provide an intuitive and accurate description of single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration affect the relative strength of the electron-electron interactions and can lead to different ground state transitions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experiments and thereby can also limit the stability of spin-qubits in quantum information proposals. Our analysis is generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6 correcte

    Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals

    Get PDF
    The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counteract the effect of the neurotoxin. Synthetic peptides, the sequences of which correspond to motifs present in the cytoplasmic domain of the synaptic vesicle membrane protein synaptobrevin 1 and 2, prevent the effect of the tetanus toxin light chain. Our results indicate that zinc bound to the zinc binding motif constitutes the active site of the tetanus toxin light chain. Moreover they suggest that cleavage of synaptobrevin by the neurotoxin causes the inhibition of exocytotic release of vasopressin from secretory granules

    Dehydrogenated polycyclic aromatic hydrocarbons and UV bump

    Full text link
    Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.Comment: 5 pages, 7 figures, Astronomy & Astrophysics, in pres

    A Middle Miocene Rhinoceros Quarry in Morrill County, Nebraska (with Notes on Hip Disease in Diceratherium)

    Get PDF
    Extensive deposits of fossil rhinoceros bones have been excavated from University of Nebraska State Museum collecting localities Mo-113, -114, -115, -116, and -118 some 8 1/2 to 9 1/2 miles north of Bridgeport, Morrill County, Nebraska. The fossils were associated with other faunal elements in the lower portion of the Marsland formation (middle Miocene) of the Hemingford group. The rhinoceros is considered to be Diceratherium niobrarensis Peterson, geologic variety. A pathologic right femur of D. niobrarensis provides evidence of hip disease in the medial Miocene rhinoceroses

    A Middle Miocene Rhinoceros Quarry in Morrill County, Nebraska (with Notes on Hip Disease in Diceratherium)

    Get PDF
    Extensive deposits of fossil rhinoceros bones have been excavated from University of Nebraska State Museum collecting localities Mo-113, -114, -115, -116, and -118 some 8 1/2 to 9 1/2 miles north of Bridgeport, Morrill County, Nebraska. The fossils were associated with other faunal elements in the lower portion of the Marsland formation (middle Miocene) of the Hemingford group. The rhinoceros is considered to be Diceratherium niobrarensis Peterson, geologic variety. A pathologic right femur of D. niobrarensis provides evidence of hip disease in the medial Miocene rhinoceroses
    • …
    corecore