686 research outputs found
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions
Light-emitting diodes are of importance for lighting, displays, optical
interconnects, logic and sensors. Hence the development of new systems that
allow improvements in their efficiency, spectral properties, compactness and
integrability could have significant ramifications. Monolayer transition metal
dichalcogenides have recently emerged as interesting candidates for
optoelectronic applications due to their unique optical properties.
Electroluminescence has already been observed from monolayer MoS2 devices.
However, the electroluminescence efficiency was low and the linewidth broad due
both to the poor optical quality of MoS2 and to ineffective contacts. Here, we
report electroluminescence from lateral p-n junctions in monolayer WSe2 induced
electrostatically using a thin boron nitride support as a dielectric layer with
multiple metal gates beneath. This structure allows effective injection of
electrons and holes, and combined with the high optical quality of WSe2 it
yields bright electroluminescence with 1000 times smaller injection current and
10 times smaller linewidth than in MoS2. Furthermore, by increasing the
injection bias we can tune the electroluminescence between regimes of
impurity-bound, charged, and neutral excitons. This system has the required
ingredients for new kinds of optoelectronic devices such as spin- and
valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional
electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material
Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2
Controlling light emission from quantum emitters has important applications
ranging from solid-state lighting and displays to nanoscale single-photon
sources. Optical antennas have emerged as promising tools to achieve such
control right at the location of the emitter, without the need for bulky,
external optics. Semiconductor nanoantennas are particularly practical for this
purpose because simple geometries, such as wires and spheres, support multiple,
degenerate optical resonances. Here, we start by modifying Mie scattering
theory developed for plane wave illumination to describe scattering of dipole
emission. We then use this theory and experiments to demonstrate several
pathways to achieve control over the directionality, polarization state, and
spectral emission that rely on a coherent coupling of an emitting dipole to
optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was
demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2
by optically coupling it to a Si nanowire
Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells
The recent advent of two-dimensional monolayer materials with tunable
optoelectronic properties and high carrier mobility offers renewed
opportunities for efficient, ultra-thin excitonic solar cells alternative to
those based on conjugated polymer and small molecule donors. Using
first-principles density functional theory and many-body calculations, we
demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with
commonly used acceptors such as PCBM fullerene or semiconducting carbon
nanotubes can provide excitonic solar cells with tunable absorber gap,
donor-acceptor interface band alignment, and power conversion efficiency, as
well as novel device architectures. For the case of CBN-PCBM devices, we
predict the limit of power conversion efficiencies to be in the 10 - 20% range
depending on the CBN monolayer structure. Our results demonstrate the
possibility of using monolayer materials in tunable, efficient, polymer-free
thin-film solar cells in which unexplored exciton and carrier transport regimes
are at play.Comment: 7 pages, 5 figure
The Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors
We present low temperature electrical transport experiments in five field
effect transistor devices consisting of monolayer, bilayer and trilayer MoS2
films, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal
that the electronic states in all films are localized well up to the room
temperature over the experimentally accessible range of gate voltage. This
manifests in two dimensional (2D) variable range hopping (VRH) at high
temperatures, while below \sim 30 K the conductivity displays oscillatory
structures in gate voltage arising from resonant tunneling at the localized
sites. From the correlation energy (T0) of VRH and gate voltage dependence of
conductivity, we suggest that Coulomb potential from trapped charges in the
substrate are the dominant source of disorder in MoS2 field effect devices,
which leads to carrier localization as well.Comment: 10 pages, 5 figures; ACS Nano (2011
Mechanical properties of freely suspended atomically thin dielectric layers of mica
We have studied the elastic deformation of freely suspended atomically thin
sheets of muscovite mica, a widely used electrical insulator in its bulk form.
Using an atomic force microscope, we carried out bending test experiments to
determine the Young's modulus and the initial pre-tension of mica nanosheets
with thicknesses ranging from 14 layers down to just one bilayer. We found that
their Young's modulus is high (190 GPa), in agreement with the bulk value,
which indicates that the exfoliation procedure employed to fabricate these
nanolayers does not introduce a noticeable amount of defects. Additionally,
ultrathin mica shows low pre-strain and can withstand reversible deformations
up to tens of nanometers without breaking. The low pre-tension and high Young's
modulus and breaking force found in these ultrathin mica layers demonstrates
their prospective use as a complement for graphene in applications requiring
flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5,
Number 8 (2012
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1
Mechanical and Electronic Properties of MoS Nanoribbons and Their Defects
We present our study on atomic, electronic, magnetic and phonon properties of
one dimensional honeycomb structure of molybdenum disulfide (MoS) using
first-principles plane wave method. Calculated phonon frequencies of bare
armchair nanoribbon reveal the fourth acoustic branch and indicate the
stability. Force constant and in-plane stiffness calculated in the harmonic
elastic deformation range signify that the MoS nanoribbons are stiff quasi
one dimensional structures, but not as strong as graphene and BN nanoribbons.
Bare MoS armchair nanoribbons are nonmagnetic, direct band gap
semiconductors. Bare zigzag MoS nanoribbons become half-metallic as a
result of the (2x1) reconstruction of edge atoms and are semiconductor for
minority spins, but metallic for the majority spins. Their magnetic moments and
spin-polarizations at the Fermi level are reduced as a result of the
passivation of edge atoms by hydrogen. The functionalization of MoS
nanoribbons by adatom adsorption and vacancy defect creation are also studied.
The nonmagnetic armchair nanoribbons attain net magnetic moment depending on
where the foreign atoms are adsorbed and what kind of vacancy defect is
created. The magnetization of zigzag nanoribbons due to the edge states is
suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200
Probing the local nature of excitons and plasmons in few-layer MoS₂
Excitons and plasmons are the two most fundamental types of collective electronic excitations occurring in solids. Traditionally, they have been studied separately using bulk techniques that probe their average energetic structure over large spatial regions. However, as the dimensions of materials and devices continue to shrink, it becomes crucial to understand how these excitations depend on local variations in the crystal- and chemical structure on the atomic scale. Here, we use monochromated low-loss scanning-transmission-electron-microscopy electron-energy-loss spectroscopy, providing the best simultaneous energy and spatial resolution achieved to-date to unravel the full set of electronic excitations in few-layer MoS₂ nanosheets over a wide energy range. Using first-principles, many-body calculations we confirm the excitonic nature of the peaks at ~ 2 and ~ 3 eV in the experimental electron-energy-loss spectrum and the plasmonic nature of higher energy-loss peaks. We also rationalise the non-trivial dependence of the electron-energy-loss spectrum on beam and sample geometry such as the number of atomic layers and distance to steps and edges. Moreover, we show that the excitonic features are dominated by the long wavelength (q = 0) components of the probing field, while the plasmonic features are sensitive to a much broader range of q-vectors, indicating a qualitative difference in the spatial character of the two types of collective excitations. Our work provides a template protocol for mapping the local nature of electronic excitations that open new possibilities for studying photo-absorption and energy transfer processes on a nanometer scale
- …
