13,650 research outputs found

    Algebraic Rainich conditions for the tensor V

    Full text link
    Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler unified field theory are known as the Rainich conditions. Penrose and more recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}, a certain fourth rank tensor quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like conditions. However, we found that not only does the tensor BαβμνB_{\alpha\beta\mu\nu} fulfill these conditions, but so also does our recently proposed tensor VαβμνV_{\alpha\beta\mu\nu}, which has many of the desirable properties of BαβμνB_{\alpha\beta\mu\nu}. For the quasilocal small sphere limit restriction, we found that there are only two fourth rank tensors BαβμνB_{\alpha\beta\mu\nu} and VαβμνV_{\alpha\beta\mu\nu} which form a basis for good energy expressions. Both of them have the completely trace free and causal properties, these two form necessary and sufficient conditions. Surprisingly either completely traceless or causal is enough to fulfill the algebraic Rainich conditions. Furthermore, relaxing the quasilocal restriction and considering the general fourth rank tensor, we found two remarkable results: (i) without any symmetry requirement, the algebraic Rainich conditions only require totally trace free; (ii) with a symmetry requirement, we recovered the same result as in the quasilocal small sphere limit.Comment: 17 page

    A compressible near-wall turbulence model for boundary layer calculations

    Get PDF
    A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects

    A near-wall two-equation model for compressible turbulent flows

    Get PDF
    A near-wall two-equation turbulence model of the K - epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K - omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    Nonequilibrium quantum criticality in bilayer itinerant ferromagnets

    Full text link
    We present a theory of nonequilibrium quantum criticality in a coupled bilayer system of itinerant electron magnets. The model studied consists of the first layer subjected to an inplane current and open to an external substrate. The second layer is closed and subject to no direct external drive, but couples to the first layer via short-ranged spin exchange interaction. No particle exchange is assumed between the layers. Starting from a microscopic fermionic model, we derive an effective action in terms of two coupled bosonic fields which are related to the magnetization fluctuations of the two layers. When there is no interlayer coupling, the two bosonic modes possess different dynamical critical exponents z with z=2 (z=3) for the first (second) layer. This results in multi-scale quantum criticality in the coupled system. It is shown that the linear coupling between the two fields leads to a low energy fixed point characterized by the larger dynamical critical exponent z=3. The perturbative renormalization group is used to compute the correlation length in the quantum disordered and quantum critical regimes. We also derive the stochastic dynamics obeyed by the critical fluctuations in the quantum critical regime. Comparing the nonequilibrium situation to the thermal equilibrium scenario, where the whole system is at a temperature T, we find that the nonequilibrium drive does not always play the role of temperature.Comment: 20+ pages, 3 figures; Revised version as accepted by PRB, added figure of mean field phase diagra

    A review of near-wall Reynolds-stress

    Get PDF
    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data

    Molecular transistor coupled to phonons and Luttinger-liquid leads

    Full text link
    We study the effects of electron-phonon interactions on the transport properties of a molecular quantum dot coupled to two Luttinger-liquid leads. In particular, we investigate the effects on the steady state current and DC noise characteristics. We consider both equilibrated and unequilibrated on-dot phonons. The density matrix formalism is applied in the high temperature approximation and the resulting semi-classical rate equation is numerically solved for various strengths of electron-electron interactions in the leads and electron-phonon coupling. The current and the noise are in general smeared out and suppressed due to intralead electron interaction. On the other hand, the Fano factor, which measures the noise normalized by the current, is more enhanced as the intralead interaction becomes stronger. As the electron-phonon coupling becomes greater than order one, the Fano factor exhibits super-Poissonian behaviour.Comment: 11 pages, 11 figure

    Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T_c superconductors

    Full text link
    The possibility of inducing topological superconductivity with cuprate high-temperature superconductors (HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet. Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier, and taking account of the transport anisotropy in the HTSC. By making use of the self-consistent boundary conditions and solutions for the barrier and HTSC regions, an effective equation of motion for the ferromagnet is obtained where Andreev scattering at the barrier is incorporated as a boundary condition for the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of the HTSC, triplet p-wave superconductivity is induced. For the layer deposited on a (110) facet, the induced gap does not have the p-wave orbital character, but has an even orbital symmetry and an odd dependence on energy. For the layer on the (001) facet, an exotic f-wave superconductivity is induced. We also consider the induced triplet gap in a one-dimensional half-metallic nanowire deposited on a (001) facet of a HTSC. We find that for a wire axis along the a-axis, a robust triplet p-wave gap is induced. For a wire oriented 45 degrees away from the a-axis the induced triplet p-wave gap vanishes. For the appropriately oriented wire, the induced p-wave gap should give rise to Majorana fermions at the ends of the half-metallic wire. Based on our result, topological superconductivity in a semi-conductor nanowire may also be possible given that it is oriented along the a-axis of the HTSC.Comment: 14 pages, 4 figure

    Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies

    Full text link
    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2\chi^{2} analyses are performed for elastic scattering, DR, and fusion cross section data for the 9^{9}Be+208^{208}Pb system at near-Coulomb-barrier energies. Similar χ2\chi^{2} analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the 9^{9}Be+209^{209}Bi system.Comment: 5 figure

    Pressure Induced Hydration Dynamics of Membranes

    Full text link
    Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent β=1.3±0.2 \beta = 1.3 \pm 0.2.Comment: REVTEX 3, 10 pages,3 figures(available on request),#
    corecore