13,650 research outputs found
Algebraic Rainich conditions for the tensor V
Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler
unified field theory are known as the Rainich conditions. Penrose and more
recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the
Bel-Robinson tensor , a certain fourth rank tensor
quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like
conditions. However, we found that not only does the tensor
fulfill these conditions, but so also does our recently
proposed tensor , which has many of the desirable
properties of . For the quasilocal small sphere limit
restriction, we found that there are only two fourth rank tensors
and which form a basis for good
energy expressions. Both of them have the completely trace free and causal
properties, these two form necessary and sufficient conditions. Surprisingly
either completely traceless or causal is enough to fulfill the algebraic
Rainich conditions. Furthermore, relaxing the quasilocal restriction and
considering the general fourth rank tensor, we found two remarkable results:
(i) without any symmetry requirement, the algebraic Rainich conditions only
require totally trace free; (ii) with a symmetry requirement, we recovered the
same result as in the quasilocal small sphere limit.Comment: 17 page
A compressible near-wall turbulence model for boundary layer calculations
A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects
A near-wall two-equation model for compressible turbulent flows
A near-wall two-equation turbulence model of the K - epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K - omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper
Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors
The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is
for determining the gravitational energy. Neither of them can guarantee a
positive energy in holonomic frames. In the small sphere approximation, it has
been required that the quasilocal expression for the gravitational
energy-momentum density should be proportional to the Bel-Robinson tensor
. However, we propose a new tensor
which is the sum of certain tensors
and , it has certain properties
so that it gives the same gravitational "energy-momentum" content as
does. Moreover, we show that a modified Einstein
pseudotensor turns out to be one of the Chen-Nester quasilocal expressions,
while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou
pseudotensor; these two modified pseudotensors have positive gravitational
energy in a small region.Comment:
Nonequilibrium quantum criticality in bilayer itinerant ferromagnets
We present a theory of nonequilibrium quantum criticality in a coupled
bilayer system of itinerant electron magnets. The model studied consists of the
first layer subjected to an inplane current and open to an external substrate.
The second layer is closed and subject to no direct external drive, but couples
to the first layer via short-ranged spin exchange interaction. No particle
exchange is assumed between the layers. Starting from a microscopic fermionic
model, we derive an effective action in terms of two coupled bosonic fields
which are related to the magnetization fluctuations of the two layers. When
there is no interlayer coupling, the two bosonic modes possess different
dynamical critical exponents z with z=2 (z=3) for the first (second) layer.
This results in multi-scale quantum criticality in the coupled system. It is
shown that the linear coupling between the two fields leads to a low energy
fixed point characterized by the larger dynamical critical exponent z=3. The
perturbative renormalization group is used to compute the correlation length in
the quantum disordered and quantum critical regimes. We also derive the
stochastic dynamics obeyed by the critical fluctuations in the quantum critical
regime. Comparing the nonequilibrium situation to the thermal equilibrium
scenario, where the whole system is at a temperature T, we find that the
nonequilibrium drive does not always play the role of temperature.Comment: 20+ pages, 3 figures; Revised version as accepted by PRB, added
figure of mean field phase diagra
A review of near-wall Reynolds-stress
The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data
Molecular transistor coupled to phonons and Luttinger-liquid leads
We study the effects of electron-phonon interactions on the transport
properties of a molecular quantum dot coupled to two Luttinger-liquid leads. In
particular, we investigate the effects on the steady state current and DC noise
characteristics. We consider both equilibrated and unequilibrated on-dot
phonons. The density matrix formalism is applied in the high temperature
approximation and the resulting semi-classical rate equation is numerically
solved for various strengths of electron-electron interactions in the leads and
electron-phonon coupling. The current and the noise are in general smeared out
and suppressed due to intralead electron interaction. On the other hand, the
Fano factor, which measures the noise normalized by the current, is more
enhanced as the intralead interaction becomes stronger. As the electron-phonon
coupling becomes greater than order one, the Fano factor exhibits
super-Poissonian behaviour.Comment: 11 pages, 11 figure
Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T_c superconductors
The possibility of inducing topological superconductivity with cuprate
high-temperature superconductors (HTSC) is studied for various
heterostructures. We first consider a ballistic planar junction between a HTSC
and a metallic ferromagnet. We assume that inversion symmetry breaking at the
tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and
allows equal-spin triplet superconductivity to exist in the ferromagnet.
Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier,
and taking account of the transport anisotropy in the HTSC. By making use of
the self-consistent boundary conditions and solutions for the barrier and HTSC
regions, an effective equation of motion for the ferromagnet is obtained where
Andreev scattering at the barrier is incorporated as a boundary condition for
the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of
the HTSC, triplet p-wave superconductivity is induced. For the layer deposited
on a (110) facet, the induced gap does not have the p-wave orbital character,
but has an even orbital symmetry and an odd dependence on energy. For the layer
on the (001) facet, an exotic f-wave superconductivity is induced. We also
consider the induced triplet gap in a one-dimensional half-metallic nanowire
deposited on a (001) facet of a HTSC. We find that for a wire axis along the
a-axis, a robust triplet p-wave gap is induced. For a wire oriented 45 degrees
away from the a-axis the induced triplet p-wave gap vanishes. For the
appropriately oriented wire, the induced p-wave gap should give rise to
Majorana fermions at the ends of the half-metallic wire. Based on our result,
topological superconductivity in a semi-conductor nanowire may also be possible
given that it is oriented along the a-axis of the HTSC.Comment: 14 pages, 4 figure
Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies
Based on the extended optical model approach in which the polarization
potential is decomposed into direct reaction (DR) and fusion parts,
simultaneous analyses are performed for elastic scattering, DR, and
fusion cross section data for the Be+Pb system at
near-Coulomb-barrier energies. Similar analyses are also performed
by only taking into account the elastic scattering and fusion data as was
previously done by the present authors, and the results are compared with those
of the full analysis including the DR cross section data as well. We find that
the analyses using only elastic scattering and fusion data can produce very
consistent and reliable predictions of cross sections particularly when the DR
cross section data are not complete. Discussions are also given on the results
obtained from similar analyses made earlier for the Be+Bi system.Comment: 5 figure
Pressure Induced Hydration Dynamics of Membranes
Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics
of the hydration of the hexagonal phase in biological membranes show that (i)
the relaxation of the unit cell spacing is non-exponential in time; (ii) the
Bragg peaks shift smoothly to their final positions without significant
broadening or loss in crystalline order. This suggests that the hydration is
not diffusion limited but occurs via a rather homogeneous swelling of the whole
lattice, described by power law kinetics with an exponent .Comment: REVTEX 3, 10 pages,3 figures(available on request),#
- …