364 research outputs found
Recommended from our members
Learning Marginalization through Regression for Hand Orientation Inference
We present a novel marginalization method for multilayered Random Forest based hand orientation regression. The proposed model is composed of two layers, where the first layer consists of a marginalization weights regressor while the second layer contains expert regressors trained on subsets of our hand orientation dataset. We use a latent variable space to divide our dataset into subsets. Each expert regressor gives a posterior probability for assigning a given latent variable to the input data. Our main contribution comes from the regression based marginalization of these posterior probabilities. We use a Kullback-Leibler divergence based optimization for estimating the weights that are used to train our marginalization weights regressor. In comparison to the state-of-the-art of both hand orientation inference and multi-layered Random Forest marginalization, our proposed method proves to be more robust
Recommended from our members
Staged Probabilistic Regression for Hand Orientation Inference
Learning the global hand orientation from 2D monocular images is a challenging task, as the projected hand shape is affected by a number of variations. These include inter-person hand shape and size variations, intra-person pose and style variations and self-occlusion due to varying hand orientation. Given a hand orientation dataset containing these variations, a single regressor proves to be limited for learning the mapping of hand silhouette images onto the orientation angles. We address this by proposing a staged probabilistic regressor (SPORE) which consists of multiple expert regressors, each one learning a subset of variations from the dataset. Inspired by Boosting, the novelty of our method comes from the staged probabilistic learning, where each stage consists of training and adding an expert regressor to the intermediate ensemble of expert regressors. Unlike Boosting, we marginalize the posterior prediction probabilities from each expert regressor by learning a marginalization weights regressor, where the weights are extracted during training using a KullbackLeibler divergence-based optimization. We extend and evaluate our proposed framework for inferring hand orientation and pose simultaneously. In comparison to the state-of-the-art of hand orientation inference, multi-layered Random Forest marginalization and Boosting, our proposed method proves to be more accurate. Moreover, experimental results reveal that simultaneously learning hand orientation and pose from 2D monocular images significantly improves the pose classification performance
Recommended from our members
Estimation of Vector Fields in Unconstrained and Inequality Constrained Variational Problems for Segmentation and Registration
Vector fields arise in many problems of computer vision, particularly in non-rigid registration. In this paper, we develop coupled partial differential equations (PDEs) to estimate vector fields that define the deformation between objects, and the contour or surface that defines the segmentation of the objects as well. We also explore the utility of inequality constraints applied to variational problems in vision such as estimation of deformation fields in non-rigid registration and tracking. To solve inequality constrained vector field estimation problems, we apply tools from the Kuhn-Tucker theorem in optimization theory. Our technique differs from recently popular joint segmentation and registration algorithms, particularly in its coupled set of PDEs derived from the same set of energy terms for registration and segmentation. We present both the theory and results that demonstrate our approach
Recommended from our members
Coupled PDEs for Non-Rigid Registration and Segmentation
In this paper we present coupled partial differential equations (PDEs) for the problem of joint segmentation and registration. The registration component of the method estimates a deformation field between boundaries of two structures. The desired coupling comes from two PDEs that estimate a common surface through segmentation and its non-rigid registration with a target image. The solutions of these two PDEs both decrease the total energy of the surface, and therefore aid each other in finding a locally optimal solution. Our technique differs from recently popular joint segmentation and registration algorithms, all of which assume a rigid transformation among shapes. We present both the theory and results that demonstrate the effectiveness of the approach
Recommended from our members
Graph cuts segmentation using an elliptical shape prior
We present a graph cuts-based image segmentation technique that incorporates an elliptical shape prior. Inclusion of this shape constraint restricts the solution space of the segmentation result, increasing robustness to misleading information that results from noise, weak boundaries, and clutter. We argue that combining a shape prior with a graph cuts method suggests an iterative approach that updates an intermediate result to the desired solution. We first present the details of our method and then demonstrate its effectiveness in segmenting vessels and lymph nodes from pelvic magnetic resonance images, as well as human faces
Recommended from our members
Guidewire tracking in x-ray videos of endovascular interventions
We present a novel method to track a guidewire in cardiac xray video. Using variational calculus, we derive differential equations that deform a spline, subject to intrinsic and extrinsic forces, so that it matches the image data, remains smooth, and preserves an a priori length. We analytically derive these equations from first principles, and show how they include tangential terms, which we include in our model. To address the poor contrast often observed in x-ray video, we propose using phase congruency as an image-based feature. Experimental results demonstrate the success of the method in tracking guidewires in low contrast x-ray video
Recommended from our members
Active Polyhedron: Surface Evolution Theory Applied to Deformable Meshes
This paper presents a novel 3D deformable surface that we call an active polyhedron. Rooted in surface evolution theory, an active polyhedron is a polyhedral surface whose vertices deform to minimize a regional and/or boundarybased energy functional. Unlike continuous active surface models, the vertex motion of an active polyhedron is computed by integrating speed terms over polygonal faces of the surface. The resulting ordinary differential equations (ODEs) provide improved robustness to noise and allow for larger time steps compared to continuous active surfaces implemented with level set methods. We describe an electrostatic regularization technique that achieves global regularization while better preserving sharper local features. Experimental results demonstrate the effectiveness of an active polyhedron in solving segmentation problems as well as surface reconstruction from unorganized points
Multilabel region classification and semantic linking for colon segmentation in CT colonography
Accurate and automatic colon segmentation from CT images is a crucial step of many clinical applications in CT colonography, including computer-aided detection (CAD) of colon polyps, 3-D virtual flythrough of the colon, and prone/supine registration. However, the existence of adjacent air-filled organs such as the lung, stomach, and small intestine, and the collapse of the colon due to poor insufflation, render accurate segmentation of the colon a difficult problem. Extra-colonic components can be categorized into two types based on their 3-D connection to the colon: detached and attached extracolonic components (DEC and AEC, respectively). In this paper, we propose graph inference methods to remove extracolonic components to achieve a high quality segmentation. We first decompose each 3-D air-filled object into a set of 3-D regions. A classifier trained with region-level features can be used to identify the colon regions from noncolon regions. After removing obvious DEC, we remove the remaining DEC by modeling the global anatomic structure with an a priori topological constraint and solving a graph inference problem using semantic information provided by a multiclass classifier. Finally, we remove AEC by modeling regions within each 3-D object with a hierarchical conditional random field, solved by graph cut. Experimental results demonstrate that our method outperforms a purely discriminative learning method in detecting true colon regions, while decreasing extra-colonic components in challenging clinical data that includes collapsed cases
- …
