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Multi-Label Region Classification and Semantic

Linking for Colon Segmentation in CT

Colonography
Xiaoyun Yang, Xujiong Ye, Member, IEEE and Greg Slabaugh, Senior Member, IEEE

Abstract—Accurate and automatic colon segmentation from
CT images is a crucial step of many clinical applications in
CT Colonography, including computer-aided detection (CAD) of
colon polyps, 3D virtual flythrough of the colon, and prone/supine
registration. However, the existence of adjacent air-filled organs
such as the lung, stomach and small intestine, and the collapse of
the colon due to poor insufflation, render accurate segmentation
of the colon a difficult problem. Extra-colonic components can
be categorized into two types based on their 3D connection to
the colon: detached and attached extra-colonic components (DEC
and AEC respectively). In this paper, we propose graph inference
methods to remove extra-colonic components to achieve a high
quality segmentation. We first decompose each 3D air-filled object
into a set of 3D regions. A classifier trained with region-level
features can be used to identify the colon regions from non-colon
regions. After removing obvious DEC, we remove the remaining
DEC by modeling the global anatomic structure with an a priori
topological constraint and solving a graph inference problem
using semantic information provided by a multi-class classifier.
Finally, we remove AEC by modeling regions within each 3D
object with a hierarchical conditional random field, solved by
graph cut. Experimental results demonstrate that our method
outperforms a purely discriminative learning method in detecting
true colon regions, while decreasing extra-colonic components in
challenging clinical data that includes collapsed cases.

Index Terms—CT colonography, segmentation, graph inference

I. INTRODUCTION

C
OLORECTAL cancer is the second leading cause of

cancer related death in western countries [1]. Most

colorectal cancers arise from pre-malignant polyps in the colon

that develop into cancer over time. The progression from polyp

to cancerous lesion takes more than ten years for most patients.

Because of this slow growth rate, colon cancer screening [2]

is an effective method for polyp detection, and subsequent

removal reduces the risk of colorectal cancer by up to 90

percent [3]. In recent years there has been much interest in CT

Colonography (CTC) [4], also called “virtual colonoscopy,”

where a clinical reader screens for colorectal disease using CT

images of the cleansed and insufflated colon [5]. Compared to
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optical colonoscopy, CTC has advantages that it affords rapid

imaging of the entire colon, is less invasive, and has virtually

no risk of perforation of the colon. In clinical practice, it is

common to scan the patient twice to better identify polyps,

once with the patient in supine position, and again in the

prone position. This often generates a large quantity of data

(typically 800 - 2000 images per patient). Several imaging

techniques have been developed to help the clinicians to view

and analyze the data more efficiently and effectively. In a

“flythrough,” a clinician searches for polyps by looking at

rendered views of the endoluminal colon surface. In the last

decade, many computer aided detection and diagnosis systems

[6], [7], [8] have been developed to assist the reader by

automatically analyzing the CT data and highlighting potential

lesions, boosting reader performance [9], [10]. More recently,

advanced prone / supine registration techniques are proposed

to better differentiate polyps from pseudopolyps [11], [12],

[13]. All of the aforementioned clinical applications rely on

automatic and robust colon segmentation.

Fig. 1. Illustration of the colon, (license to reproduce the image granted by
Terese Winslow).

The colon, located in the abdomen below the stomach

and lungs, is separated into five sequential anatomic sections:

ascending, transverse, descending, sigmoid and rectum, as

shown in Figure 1. When CT scanning is performed, the

patient’s colon is distended with carbon dioxide (or air), which

appears very dark in the CT image. However, for tagging

liquid and solid residues in the colon, the patient may have

been administered oral contrast agents. In the CT image, these
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agents appear as bright regions (typically with Hounsfield

units (HU) > 300). There are two major challenges to robust

colon segmentation: first, there are other structures partially or

fully filled with air adjacent to the colon, such as lung, small

intestine, stomach. These structures may appear 3D-connected

with the colon as a result of partial volume effect (PVE).

Second, ideally the colon is one connected air-filled region as

a result of the distension. However, when poorly insufflated,

the colon may be collapsed into several disconnected sections.

Due to the extra-colonic components, CAD systems may

produce out-of-colon false positives [14], which the clinical

reader must dismiss and may affect their confidence in the

CAD. We classify the extra-colonic components into two

categories: detached extra-colonic components (DEC), which

are not 3D connected to the colon, and the attached extra-

colonic components (AEC), which are connected.

A. Related work

Automatic colon segmentation has been addressed in recent

research [14] – [15]. Nappi et al. [16] proposed a knowledge-

guided approach to segment the colon in two steps: anatomy-

based extraction (ABE) and colon-based analysis (CBA). ABE

removes extra-colonic components such as bones and lung in

an “outside-to-inside” approach; CBA remove digestive extra-

colonic components such as stomach and small bowels in

an “inside-to-outside” approach, by starting a region growing

process from a seed placed in the rectum. Multiple seeds are

required when presented with partially or completely collapsed

colon regions. This method and [16], [17], [18], [14] are

more capable of dealing with DEC and not designed for AEC

removal. In [19], [20], centerline-based colon segmentation is

proposed to remove AEC, but is only valid for well-distended

or slightly collapsed colon cases. However, these methods, as

well as other published colon segmentation methods require

numerous rules and parameter values to be set empirically.

Recently [15] is the first to rely on machine learning to solve

this problem in a systematic way. This approach first extracts

all the 3D air components and applies a binary classifier

to classify them into colon components and extra-colonic

components. The method then applies a “daisy-chaining”

algorithm based on distance to sequentially merge the compo-

nents between the rectum and cecum. However, due to colon

collapses and nearby extra-colonic segments, distance alone

can be insufficient to provide robust linking. Furthermore,

this method does not address the issue of AEC. Collapsed

colons and AEC remain the major barriers to achieve robust

segmentation when presented with such difficult cases that are

common in clinical practice.

B. Our contributions

To address these limitations, in this paper we propose a

graph inference scheme for colon segmentation using semantic

information derived from a multi-class classifier. We first pre-

process the data to form a collection of single-connected

3D objects. Each 3D object can be decomposed into and

represented by a set of 3D regions. The obvious non-colon

DEC objects are removed if none of its constituent regions

is selected by a binary classifier trained from region-level

features. A semantic linking strategy is employed to further

remove DEC objects. For each remaining object, we identify

any AEC regions using a conditional random field (CRF) that

incorporates appearance features and spatial dependencies.

The contributions of this paper are three-fold:

1) We introduce a method to detect the colon at a region

level. This provides robustness in the presence of col-

lapses or AEC, particularly for salient regions that are

more easily discriminated from non-colon regions.

2) We present a semantic linking strategy to guide the colon

segmentation using a multi-class classifier to provide the

semantic knowledge that indicates to which section of

the colon each salient region belongs.

3) We formulate the task of AEC removal in a hierarchical

framework as a CRF problem, solved by performing

graph cut at each level.

II. METHODOLOGY

A. Terminology

Before describing the approach, for clarity, we define some

important terms used in this paper. We define a node as a

set of connected pixels in 2D. We intend nodes to model the

colon on a particular transverse slice forming a 2D image of

the 3D volume. However, as there are other adjacent air-filled

anatomies near the colon, nodes may exist for extra-colonic

image regions as well. Fundamental to this paper is the concept

of a region, which is a collection of strongly connected nodes

(one can think of a region as a type of supervoxel). The regions

group nearby nodes together, and typically nodes in a region

will be from the same anatomical section of the colon (e.g.,

sigmoid colon). Finally, an object is a collection of voxels that

are simply connected in 3D. Working directly with objects is

problematic because a single object may have AEC or model

different anatomical sections of the colon. Therefore, in this

paper, we will decompose objects into regions. In terms of

set theory, N ⊆ R ⊆ O, where N is a 2D node, R is a 3D

region, and O is a 3D object. Our objective in this paper is

to find the set of regions that model the colon, and link them

together semantically to form a segmentation.

A schematic diagram showing AEC and DEC, along with

objects, regions, nodes, and true positive colon is shown in

Figure 2. In the figure, each object enclosed in a red dashed

line consists of a number of regions (shown as blue rectangles),

while each region has a number of nodes (small yellow

circles). The blue dotted dash rectangle indicates true positive

colon consisting of three objects (Objects 1, 2, and 4) and

Region 1 in Object 3. Therefore, Region 2 in Object 3 is AEC

which is attached to the colon; while Object 5 in the figure

consists of two DEC regions. The proposed method aims to

remove the DEC and AEC while retaining the true positive

colon volume.

B. Overview

Figure 3 provides a high-level overview of the approach.

Given a CT image, the method first forms regions, which
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Fig. 2. Schematic diagram illustrating AEC and DEC, along with objects, regions, and nodes.

Fig. 3. Overview of the methodology.

consist of strongly connected nodes. Working with regions

is advantageous in this problem, since due to partial volume

effect and pseudo-enhancement, simple connectivity can group

colon with non-colon voxels. Once regions are determined, all

subsequent processing is region-based. We extract features that

characterize each region’s location and shape. The features are

used in two classifiers. The first, binary classifier, determines if

the region is colon or non-colon. Then, a multi-class classifier

categorizes the region into one of six classes, based on the

anatomical sections of the colon. A semantic linking strategy

uses the anatomic labels to group the regions in the proper

order to eliminate remaining DEC, and a final CRF problem is

solved to remove any AEC to produce the final segmentation.

Below we describe these steps in detail.

C. Region formation

1) Image processing: Normally, the colon is insufflated

with gas, which appears as a low intensity in the image.

However, oral contrast agents (tagging) are often used to

opacify any liquid or solid remains in the colon. These contrast

agents have a high intensity. Therefore, we first apply pixel-

wise thresholding on each slice of the input volume based on

predefined Hounsfield (HU) values described in Equation 1.

Pixels are then labeled as air, high-intensity and background

(non-colon), respectively.

f(I) =







air if I < −700
high intensity if I > 300
background otherwise

(1)

where I is the Hounsfield value of a given pixel. Figure 4 (a)

shows a CT slice, and in (b) and (c) the results of detecting

the air and liquid regions.

One difficulty to the simple thresholding described above is

at the interface between air and liquid. Due to partial volume

effect, this “gap area” can have Hounsfield units that are in the

background (tissue) class, and can disconnect a set of colonic

voxels into disjoint sets. However, this gap area is part of

the colon and should be included in the segmentation, and

we would prefer these adjacent air and liquid regions merged.

We note that the air/liquid interface is small, and flat due to

gravity. We use these properties to identify the gap area and

merge the colonic air with tagged liquid.

After thresholding, we identify the liquid tagged area on

each slice by finding high-intensity pixels neighboring the

air. Distance transforms (using the bwdist function in Matlab)

are computed from the air pixels and the high intensity

pixels in each slice respectively. In the gap between colon

air and tagging fluid, the gradient of the respective distance

transforms should point oppositely in the vertical direction.

We apply a dot product operation with the y (corresponding

to gravity) gradients. If the dot product is less than Tgrady
(e.g., −0.98), we detect that the gradients point oppositely

in the vertical direction. Furthermore, the distance value for

that pixel from either distance transform should be less than

a threshold TGapWidth. The pixels satisfying both conditions

are considered as the gap area between colon air and liquid, as

shown the dark area in Figure 4 (d). This process is described
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(a) original slice (b) air (c) high intensity pixels, > 300

(d)gap area (e) selected gap area (f) merged colon air and tagging liquid

Fig. 4. Colon air and liquid merging.

(a) (b)

Fig. 5. In (a), we show a schematic of region formation, consisting of 2D nodes (ellipses) that are grouped into regions (green, orange, yellow). In (b), we
show regions identified in a real dataset. A zoom-in is shown for the ascending colon position, where we can see a salient region (coded by dark red) and
small fragment regions (coded by light red or yellow).

by Equation 2.






M1 = dt(air) < TGapWidth

M2 = dt(high intensity) < TGapWidth

M3 = grady(dt(air)).∗
grady(dt(high intensity))

M4 = (M3 < Tgrady). ∗ (M1). ∗ (M2)

(2)

where dt(.) represents the distance transform operation,

grady(.) represents the y component of the gradient. For

robustness, the area is further filtered by features (area,

eccentricity, and the flatness), producing the final gap area

illustrated in Figure 4e. The gap area is accepted if area > 3

pixels, eccentricity > 0.9, flatness < 0.45) (flatness =
height(rect)
width(rect) ). High intensity areas, along with the adjacent gap

areas are considered as tagged liquid and merged with the

colon air using morphological operations.

2) Grouping: We form 3D regions by checking the strength

of the connection between constituent 2D nodes on transverse

slices; a depiction is shown in Figure 5(a). A node ni in slice

k may overlap a node nj in its neighboring slice k + 1 (or

k − 1). E(ni, nj) represents the Jaccard index between node
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ni and nj and is defined as

E(ni, nj) =
area(ni) ∩ area(nj)

area(ni) ∪ area(nj)
. (3)

We define an adjacency matrix A(ni, nj) to encode the con-

nectivity between nodes. An element of the adjacency matrix

is set to one if:

• E(ni, nj) ≥ 0.5. In this case, nodes ni and nj are

strongly connected and very likely to be part of the same

structure.

• 0 < E(ni, nj) < 0.5 and ni doesn’t connect with more

than two nodes nj and nk. This allows for rapid area

changes in the 3D segment when there is no branching

connection.

In Figure 5(a) we show different regions within the volume

with a different color. Based on the adjacency matrix, the colon

is naturally separated into different regions at turning points

(such as near the hepatic/splenic flexures) and branching points

when connected with other structures. As we will show, this

enables the separation of the colon from AEC. However, due

to the complex shape of the colon, small fragment regions are

often generated (illustrated in Figure 5(b)). The features from

these small regions are not discriminative and are not useful

for the task of classification.

The ith 3D connected set of voxels forms an object,

denoted by vi. Using the method described above, each

individual object vi can be decomposed into a set of regions

(vi1, vi2, ..., vip) that we use in subsequent sections of this

paper.

D. Feature Extraction

A colon object usually consists of a number of 3D salient

colon regions, and non-salient colon regions that are mainly

fragments. The salient colon regions have a different geometric

appearance and spatial distribution than the non-colon or non-

salient colon regions. To differentiate colon regions (particu-

larly salient ones) from non-colon regions, we developed a set

of 114 features listed in Table I (this includes some features

from [15]). The features are grouped into three categories.

Category 1 are 3D features, computed over the entire 3D
region. This includes the 3D enclosing box (represented by six

values) and its normalized position (another six values) relative

to the bounding box formed from all candidate regions in the

volume. Also included is the region’s length, approximated

by area2

4×π×volume
, and the radius, approximated by 2×volume

area
,

where area is the side surface area and volume is the volume

of the 3D region.

Category 2 looks at the distribution of the 3D region’s

features across its constituent 2D nodes on transverse slices.

More specifically, we compute the maximum, minimum, mean

and median of each measure, specifically area, eccentricity,

perimeter, solidity (true area divided by convex area), equiva-

lent diameter, and Euler number of each node.

Finally, category 3 features are based on the holes in each

node, as well as concavities along its boundary. A given region

may contain a number of nodes; and each node will consist of

a set of pixels with a boundary. Holes are found using inverting

the node and counting the number of connected components.

Intuitively, the number of holes will be low in the colon, but

high for non-colon anatomy like the lungs, which contain a

large number of a vessels that appear as holes in the original

(uninverted) node. Concavities are based on the critical points

technique described in Section 4.1 of [14], which analyzes the

curvature of points along the boundary of a node to determine

a concave area. For both a region’s holes and concavities, a set

of 9 statistics (number, as well as sum, maximum, minimum,

mean, median, variance, entropy, mode of the area forming

the hole or concavity) are computed for each transverse slice.

Then, a set of 4 summary statistics (maximum, minimum,

mean, and median) are computed across all the slices in the

region, forming a set of 9× 4 features; one set of 36 features

for holes, and another for concavities.

E. Probabilistic classification

Next, we train two classifiers (a binary and a multi-class

classifier) to classify 3D regions. The binary classifier is

designed to discriminate between colon and non-colon regions,

while the multi-class classifier labels a region into one of the

six anatomic colon classes to provide semantic information

required for linking the regions as discussed in Section III-A.

For the binary classifier, we use a boosting tree introduced

by [21], that consists of an ensemble of a serial of trees

built in an additive manner. It uses a tree classifier as a

weak learner to generate a hypothesis h1. The distribution

of weights of the training samples is updated by a function

of the classification error. A next hypothesis h2 is generated

by training a weak classifier on the samples randomly drawn

but controlled by the distribution of weights from the training

data space. The samples misclassified in the previous round

can be drawn repeatedly by chance. This process continues

iteratively until a target error bound or maximum number of

rounds has been reached. The final hypothesis H is formed

by linearly combining the set of trees (h1,h2, ... ht) generated

at each round with their weighted votes. During testing, after

the classifier has been trained, the probability [21] of a region

being colon is estimated as

P (c1ip|vip, I, θ) =
exp(F (c1ip))

exp(F (c0ip)) + exp(F (c1ip))
(4)

where I is the volume data and θ is the model generated

by training the classifier. cip is the set of labels for each

candidate region vip. c1ip represents the region corresponding

to colon and c0ip represents the region corresponding to non-

colon. F (c1ip) and F (c0ip) is the classifier prediction value for

colon and non-colon respectively.

The regions with high volume appear more salient, with

more discriminative features. Also, misclassification of high

volume colon regions is highly undesirable. To differentiate

these salient regions, we give more weight to the regions with

high volume during classifier training, but less weight to small

volume regions. The weight factor is defined by the square

root of the region’s volume, which penalizes misclassification

of high volume regions. During testing, the classifier estimates

the probability of each region to be colon, and for any object
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Features Name Num features

Category 1 body position, normalized body position, number of 2D regions,

volume, volume
number(Dregions)

, surface area, length, radius 18

Category 2 area, eccentricity, perimeter, solidity, equivalent diameter,
Euler number 6× 4 = 24

Category 3 holes, concavities 9× 4× 2 = 72

TABLE I
FEATURES OF COLON REGIONS, 114 FEATURES IN TOTAL.

vi, if one of its constituent part vip is assigned to be colon, the

whole object vi will be labeled as colon for the subsequent

processing. Otherwise, the region is labeled as non-colon and

discarded as DEC.

To build a semantic contextual information for the graph in-

ference in the next stage, we employ a multi-class classifier to

label the regions into anatomic five sections by their locations:

rectum (1), sigmoid (2), descending colon (3), transverse colon

(4) and ascending colon (5), class number m = [0, 1, ..., 5] is

arranged in a semantic sequence; the class number is 0 for

non-colon. The colon regions are categorized into these classes

according to which colon section most of its volume is located.

Multi-class LogitBoost [21] directly estimates the multi-class

probability as

P (lmip |vip, I, θ) =
exp(F (lmip))

∑

l exp(F (l
m
ip))

(5)

where θ is the model generated by training the classifier, and

lmip represents the region vip corresponding to colon section m.

F (lmip) is the classifier prediction value of class number m for

that candidate region vip. We adopt the same principle to train

the multi-class classifier, weighting the misclassification cost

of each region with the square root of the region’s volume.

For training the binary classifier, we could automatically

label each region as colon/non-colon by checking whether

the region overlaps with the annotated targeted object. For

the multi-class training data, we are only interested in the

semantic information of the salient regions. The salient regions

(on average 15 per volume) are checked visually to determine

which anatomic section of the colon they best represent. The

salient regions are the regions with the volume exceeding

1% of the total volume of the air-filled regions. There are

some uncertainties when the regions are crossing two anatomic

sections; however, the majority of the regions reflects the

distributions of each anatomic section and is suitable to train

the multi-class classifier.

The posterior probability of being colon/non-colon esti-

mated by binary classifier and the output of the multi-class

classifier are used in subsequent graph inference methods

described in the next section.

III. GRAPH INFERENCE

In this section, we present a graph scheme with two separate

graph inference steps to remove the remaining DEC if existing

and AEC respectively.

A. Semantic Linking

To further remove the DEC, we propose a class-level

topology graph to characterize the classes’ spatial relationship

and use it to guide the linking of each colon regions. A

variant of pictorial structures (PS) model [22] is employed

to identify the rectum and ascending colon regions. We then

solve a minimum path problem between these identified end

regions using anatomic constraints induced by the multi-class

classifier. This effectively removes the remaining DEC.

1) Rectum and Ascending Colon Identification: We note

that the rectum and cecum are distinctive landmarks in the

colon and their detection is an important component of related

work [15]. In our approach, we do not detect the cecum

directly, but rather seek to identify the ascending colon re-

gions, which will naturally include the cecum due to strong

connectivity.

PS [22] is a probabilistic model that allows the represen-

tation of an object as a collection of regions in an image,

which are linked, pairwise, by deformable spring-like con-

nections. Each connection defines the relationship between

the two regions it connects. In our approach, the connections

correspond to the relative spatial positions between regions.

The model can be further formulated into two terms, as

shown in Equation 6. The first term describes the probability

of a region being the target (rectum or ascending) by its

geometric appearance features. The second term describes the

spatial configuration of the regions which is encoded through

a pair-wise term between regions labelled by the multi-class

classifier, as

p(L|I, θ) ∝ P (I|L, θ)P (L|θ) (6)

where L represents the region label, and θ = (φ, ψ), φ
represents the model derived from individual’s appearance

features, and ψ describe the interrelationship of objects, and

in the PS model can be re-expressed as

p(L|I, θ) ∝ P (I|L, φ)P (L|ψ)
∝ P (L|I, φ)P (L|ψ)

(7)

This can also be viewed as a CRF problem. The first term

P (L|I, φ) acts as an unary term representing the probability

of a label given the region’s appearance features. The second

term P (L|ψ) acts as a pairwise term, to model the relative

spatial relationship between regions with different labels. This

can be directly approximated estimated by multi-class boosting

classifier as described earlier. Equation 7 is approximately

equivalent to
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Fig. 6. Class-topology diagram, where (R, S, D, T, A) represent rectum, sig-
moid, descending, transverse and ascending sections of the colon respectively.
Valid connections are shown in black, and an invalid connection is rendered
in red.

p(L|I, θ) ∝
∏

p(lip|vip, I, φ)
︸ ︷︷ ︸

first term

∏

p(lip, ljq|ψ)
︸ ︷︷ ︸

second term

(8)

More specifically, we are looking for two regions, one from

the rectum and the other from the ascending colon,

p(l1ip|vip, I, φ) =
exp(F (l1ip))∑
m

exp(F (lm
ip
))

p(l5jq|vjq, I, φ) =
exp(F (l5jq))∑
m

exp(F (lm
jq

))

(9)

p(l1ip, l
5
jq|ψ1,5) = N(o(vjq)− o(vip),Σ1,5) (10)

This equation describes a spatial relationship of two can-

didates, region vip being the rectum class (l1ip), region vjq
being the ascending colon class (l5ip), and their positions

o(vip),o(vjq) using a multivariate normal distribution. The

relative spatial position of the two regions can be represented

as a vector o(vjq) − o(vip), which is a translation of o(vjq)
(ascending colon) if using o(vip) as a reference region (rec-

tum). The joint probability for the locations of the regions

is based on the deviation between their the observed ones

(o(vip),o(vjq)) and their ideal relative values characterized by

a covariance matrix Σ1,5, which is learned from the rectum and

ascending colon regions in the training data through maximum

likelihood. The covariance matrix Σ1,5 can be viewed as the

stretchiness between two regions. Using o(vip) (rectum) as

reference, varying the location of o(vjq) (ascending colon) can

result in a different cost depending on the covariance matrix

Σ1,5. For example, the ascending colon should be located to

the left and above the rectum. A region located to the right (a

wrong direction of ascending colon relative to the rectum) will

have a low probability and thus be unlikely to be identified as

ascending colon.

2) Class-topology graph: The topology of the colon is

known a priori in this problem; colon regions should follow a

valid, sequential linking from the rectum, sigmoid, descending

colon, transverse colon and ascending colon. Ideally, the colon

regions are initially linked through the entire colon in the

proper anatomic sequence. However, often a colon anatomic

section may be broken into a number of disconnected regions.

Additionally, the regions may skip the next class in the

sequence and instead connect with regions from the class

after the next if the colon is collapsed, as shown in Figure 6.

Consequently, we define a class-topology graph Gc, defined

by Equation 11

Gc =











1 1 1 t t

t 1 1 1 t

t t 1 1 1

t t t 1 1

t t t t 1











(11)

where each node represents a class from m = 1, 2, ..., 5
sequentially, and use a large value t (representing infinity) to

penalize undesired transitions. After we reach one class, the

search of regions is limited to regions of the current class, the

next class and the class after the next. Backward links or links

that skip two classes are unlikely and will be penalized based

on Equation 11.

B. Minimum-Cost Path Problem

After we have the class-topology graph Gc and identified

two end regions vrectum and vascending of the colon, the

problem of identifying the remaining regions representing

the colon can be formulated as a minimum-path problem. A

graph Gp is defined over the set of regions selected by the

binary classifier vip, vjq, ... to be colon. A vertex of the graph

represents a selected region vip; an adjacency matrix is defined

by a weighted distance cost function between two regions, as

defined in Equation 12:

Wp(vip, vjq) =

{
0 if i = j

Gc(vip, vjq) ∗∆(vip, vjq) if i 6= j
(12)

where ∆(vip, vjq) represents a minimum distance between

the terminal regions of object vi that contains vip and the

terminal regions of vj that contains vjq . Distance between

any two regions is based on the Euclidean distance between

their bounding box centers. If regions vip and vjq are from

a single simple-connected 3D set (i = j), then the weight

in Equation 12 is zero. Otherwise, the two regions vip and

vjq are not from the same 3D object (i 6= j), and their

weight is ∆ multiplied by a class-topology matrix Gc (defined

by Equation 11) which encodes the semantic information of

the colon. For example, once the 3D object (vi) including

descending colon regions has been identified (m = 3), the 3D
object (vj) identified as transverse colon (at least one region

being m >= 3) is expected instead of sigmoid or rectum. To

encourage the proper sequence, the pairwise term for out-of-

sequence regions is penalized to be very large value (t = ∞).

This limits the search range for the subsequent components to

the regions from neighboring classes by giving a penalty to the

regions from other classes which not admissible based on the

class-topology graph. The colon segmentation problem is thus

reduced to a minimum path problem between two end regions

identified by PS model, and solved by using Floyd-Warshall

algorithm [23]. All the 3D objects containing the regions on

the resulting path are considered as colon objects and go to

subsequent processing. All the other unselected objects are

removed as DEC.
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C. AEC Removal

After removing DEC in the previous step, we aim to remove

AEC in the final stage. For example, Figure 9(a) shows a case

of lung attached to a descending colon region, and Figure 9(a,

d) illustrate two cases of small intestine connected to the colon

(a more commonly occurring phenomenon). Given a 3D object

and its constituent regions, we represent the regions of the

object on a graph Gi = (Vi, Ei), where Vi is a set of nodes

vi1, vi2, ..., vik , Ei describes the connections between the

regions. We seek a labeling L = 1, 0 corresponding to colon

or non-colon for each region, and the ones labeled as non-

colon are removed as AEC. An assignment of labels to each

region is denoted as y. This can be formulated as a CRF [24]

problem, where each random variable associates a region with

one of the possible labels L. This problem can be formulated

in terms of energy minimization, as shown in Equation 13:

E(y) =
∑

α(y) +
∑

β(y) (13)

where α is a unary term and β is a pair-wise term. The unary

term α is represented by the probability of individual object

being colon provided their appearance features, which can be

estimated by the binary boosting tree classifier described in

Equation 4. The pair-wise term β describes the interactions

between the regions to enforce a consistency between neigh-

boring regions if they are strongly connected and is described

below. Much research has been published to solve this class

of optimization problem, and graph cut [25] is proved to be

one of the most efficient solutions.

As discussed earlier, we force the 3D object into a set

of regions by only checking the strength of the connection

between constituent 2D regions on transverse slices. This

could lead to undesired small fragments when the 3D shape

is complex. The features of these low volume regions are not

as distinctive as the features of high volume regions. This

may confound the classifier and misclassify these low volume

regions of the colon as non-colon.

Therefore, instead of performing the conventional graph

inference, we propose a hierarchical graph cut to robustly infer

the labels of the constituent regions on the graph: we use the

original graph Gi that incorporates all the constituent regions

of the given object as a low-level graph Gl
i, and from which we

can construct a high-level graph Gh
i that only consists of the

subset that are high volume, as shown in Figure 7. CRF can be

employed to model the regions and their interactions on each

level of the graph. The inference is first started by performing

a graph cut on the high-level graph, and the resulting labels

are then passed to the same high volume regions on the low

level graph as initialization and a low-level graph cut is then

performed to infer the labels for all the regions.

On the low-level graph Gl
i, the probability estimation given

by the classifier is unreliable for small volume regions, and

therefore cannot acted as the unary term. We instead assign

0.5 as their unary term value which gives them a 50%
probability of being colon, and their labels thus depends on

the connections and labels of their neighborhood. The pair-

wise term β(y), defined over graph edges, is designed to

describe the connection strength (CS) between regions in

Fig. 7. A diagram of a hierarchical graph.

the 3D object. The CS is measured by the Jaccard index

of the interfacing 2D regions between the two regions vi
and vj . We categorize CS into two types: CS between the

regions from different structures (e.g., colon and lung) and CS

between the regions from the same structure (e.g., both from

the colon). The distribution of Jaccard index is modeled as two

normal distributions, with mean values 0.35 (between the same

structures) and 0.1 (between different structures) learned from

a training dataset. We then apply linear discriminant analysis

(LDA) [26] to learn the distribution of the CS directly, and

the estimated posterior probability from the LDA classifier is

used to describe the likelihood that the regions come from the

same structure. The value of the pairwise term will be close to

1 if the Jaccard index value between the two regions is large

(e.g. above 0.35) and that indicates they are from the same

structure, either both are colon or non-colon. Otherwise, the

value will be close 0 if the Jaccard index value is low (e.g.,

0.01) and there will be no constraint to enforce them to have

the same labels.

On the high-level graph Gh
i , the features of the high volume

regions are distinctive and their probabilities of being colon

estimated by the boosting tree classifier can be reliable. We

thus use these as the values of unary term. The value of the

pair-wise term between any high volume regions in graph Gh
i

is defined to be the minimum of the pair-wise values along the

shortest path connecting them at the low level graph Gl
i. In

Figure 7, the red nodes are the high volume regions appearing

in both graphs. If two regions in high-level graph Gh are

neighboring in low-level graph Gl
i, such as node 2 and 7 in the

figure, the value of pair-wise term between them in Gh
i is the

same value in Gl
i. If the two regions in Gh

i are not neighboring

in Gl
i, such as node 2 and 9, the value of pair-wise term in

Gh
i is the smallest edge weight on the shortest path between

the regions in Gl
i.

In summary, the labeling of the high-level graph is passed to
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the low-level graph to act as unary term for the corresponding

regions. Unreliable smaller volume regions in the low-level

graph that do not have corresponding regions in the high-level

graph are given a unary value of 0.5, which means that they

can be equally likely to be colon or non-colon. A second graph

cut performed on the low-level graph gives the final labeling of

all the regions on the graph. The regions labeled as non-colon

are removed as AEC.

IV. MATERIALS

We have collected 52 CTC volumes from five different

institutions in Europe and the USA using different scan-

ning hardware (GE LightSpeed Plus, GE LightSpeed Ultra,

Siemens SOMATOM Plus 4 Volume Zoom). None of the data

came from public databases. Patients were prepared using

a standard cathartic preparation [27] to eliminate residual

waste in the colon before scanning. In addition oral contrast

agents were administered so that liquid and solid regions were

“tagged,” resulting in large (>1000) Hounsfield units. Patients

were insufflated with carbon dioxide gas to result in distension

of the colon. kVp ranged from 120 - 140, and exposure ranged

from 29 - 500 mAs. Each volume consisted of a set of 512
by 512 image slices. Slice thickness varied from 1.0 to 1.25

mm, with the in-plane resolution from 0.54mm to 0.85mm.

The total number of slices for each scan ranged from 294 to

514, with an average of 404. Data was acquired subject to full

institutional review board (IRB) approval, and followed ethics

protocols to anonymize patient records.

Although standard CTC protocols involve scanning the

patient in two orientations (prone and supine), we randomly

selected one of these orientations per patient when construct-

ing our dataset (to avoid training one orientation of a patient

and testing on the other orientation). As a result, each volume

in our data is from a different patient. The 52 volumes were

split randomly into 26 training and 26 independent testing

datasets, so that no selection bias was present. Annotations

made by radiologists were used as ground truth. As described

previously, the regions with the volume exceeding 1% of the

total volume of that data after pre-processing were exported

into a separate file, and visually checked in which of the five

sections they were more likely to be located more likely.

The region formation (Section II-C) was performed using

a custom application written in C++ using Visual Studio

2010 (Microsoft, Redmond WA, USA). Subsequent processing

was performed using Matlab (Mathworks, Natick MA, USA)

version 7.6.

V. EXPERIMENTAL RESULTS

We implement an object-level DEC removal method in-

spired by [15] as our baseline algorithm for comparison. First,

we group all the 2D nodes into 3D regions and compute

the 114 features for each 3D region to train a boosting tree

classifier. 3D regions are selected and output if the chance of

being colon estimated by the classifier is greater than of being

non-colon. The result is checked against the ground truth. This

baseline approach can eliminate DEC but does not address

AEC, which is a challenge for data often seen in clinical use.

We defined the following three measures to compare the

performance of the methods: FN negative volume and false

positive (FP) volume. FN volume measures the volume of

colon regions missed by the algorithm. FP volume measures

the volume of the extra-colonic components labeled as true

colon regions by the algorithm. We additionally compute the

Jaccard index of the final colon segmentation with the ground

truth. If there are extra non-colon regions remaining in the

output, such as lung, stomach or small intestine, the overlap

ratio will be low.

In the testing data, 16 out of the 26 volumes have collapses,

and 10 out of the 26 volumes have AEC (typically small bowel,

lung or stomach). Due to untagged liquid remains, there is one

data set with no air in the rectum and therefore no rectum in

the segmentation. The PS model correctly identifies the rectum

and ascending colon for the other 25 cases, demonstrating

the power of the PS model. Figure 8(a-b) illustrates two

examples. For the liquid-filled rectum case, it finds the region

at the sigmoid section as an alternative to the rectum shown

in Figure 8(c). Since the rectal point is shifted in this data

set, the model mistakenly picks up a region near the hepatic

flexure. However, the selected region and the true ascending

colon region are connected in 3D. Measuring the performance

at the 3D object level, the PS model has identified the 3D

objects containing the rectum or ascending regions with 100%
accuracy respectively.

Table II tabulates the segmentation results on the 26 testing

datasets. Among them, 15 volumes are less challenging; our

algorithm and the baseline method give the same result.

However, the remaining 11 volumes are challenging as most

of them have strong presence of both collapses and AEC.

False positives generated in step one (binary classification)

may be corrected in step two (semantic linking), however, false

negatives generated in step one are unrecoverable in step two.

Compared to the baseline method that applies a classifier to

each 3D object directly, the first step of our method (binary

classification) achieves less false negative (FN) volume, but

at the expense of more false positive (FP) volume. Such a

result is expected at the first step, as the segmentation still

includes DEC and AEC, the latter of which is not addressed

until the second step of the approach. Compared to the baseline

algorithm, the FN volume decreases by 37.8% but with the FP

volume increasing by 17.9% on average. This shows a better

detection rate by introducing some extra-colonic components.

However, the overall performance measured by the Jaccard

index increases by 8.4%, which demonstrates that the power

of the region-level classification, based on the salient regions,

is more immune to collapses than a purely discriminative

approach.

The second row of the table gives the final result of

our graph inference (semantic linking and AEC removal).

Compared to the baseline, the FN volume decreases by 9.7%
on average, the FP volume reduces by 63.1% on average.

The improvement in FN reduction is less pronounced that

first stage, however, it still outperforms the baseline algorithm

by 9.7% in terms of FN volume reduction. Importantly, the

FP volume is hugely decreased by 63.1% compared to the

baseline algorithm. The overall performance increases by
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(a) b) c)

Fig. 8. This figure (a-c) illustrates the results generated by the PS model, where the identified rectum and ascending colon is coded by dark color. The red
arrow indicates the place of the rectum and the green arrow indicates the ascending colon. (a)-(b) show two cases with correct detections, (c) the identified
ascending region is not at the correct location, but in this data it shares the same 3D object with the ascending regions and thus no targeted colon is missed
in the result.

TABLE II
RESULTS COMPARED TO THE BASELINE ALGORITHM. WHEN USING THE PROPOSED METHOD ON THE CHALLENGING DATA, THE JACCARD INDEX

IMPROVES 12.9%, THE FN VOLUME REDUCES BY 9.7% AND THE FP VOLUME REDUCES BY 63.1% ON AVERAGE COMPARED WITH THE BASELINE

APPROACH. VOLUMES MEASURED IN CM3 , AND IMPROVEMENT IS MEASURED RELATIVE TO THE BASELINE METHOD.

12.9% in terms of Jaccard index, outperforming the baseline

and the first stage of our method. Quantitatively, these results

demonstrate a notable improvement with proposed technique.

Figure 9 shows colon segmentations comparing our pro-

posed method against the baseline. In the examples, although

the baseline algorithm has provided good performance, in

some data, especially, when the lung, stomach and small

intestine are connected with large intestine, it fails to remove

those extra-colonic components, which our algorithm better

handles. However, under-insufflated colons remain a challenge,

particularly those with small volume regions where the colon

is collapsed into fragments or appear to be very thin in

the CT images. Extra-colonic components that remain belong

primarily to lung, small bowel or stomach, and are typically

smaller misclassified regions. Our method prioritizes the larger

volume regions representing the majority of the colon volume,

but as a consequence, smaller volume regions may be harder to

disambiguate a colon vs non-colon. Nonetheless, our method

produces encouraging results, improving the Jaccard index by

12.9% for the 11 challenging datasets in our data.

The trained classifiers were tested on a computer with

2.40GHz quad core CPU and 8 GB Memory. On average, it

takes about 17 seconds to process the whole image (including

loading and writing images) to achieve the colon segmentation.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel region-level colon

segmentation method that introduces graph inference and

multi-class semantics. We tackle the two challenges in colon

segmentation in a systematic manner: colon collapses and the

removal of attached extra-colonic components (AEC).

We decompose each 3D object into a set of 3D regions,

and detect the 3D colon object from the salient regions that

have strong discriminative features. The collapse of the colon

may occur at various locations in the colon. In addition, the

true colon object may be attached to extra-colon components

due to PVE. The AEC could generate a mixing effect at the

object-level detection, and learning the generated features may

confound the classifier and lower its performance. Trained with

the features from solely the salient regions, the classifier model

pays more attention to the coherent appearance and spatial

features for more consistent performance.
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a) b) c)

d) e) f)

h) i) j)

Fig. 9. Performance comparison: the left column (a, d, h) is the input volume, the middle column (b, e, i) is the baseline result, and the last column (c, f,
j) is our algorithm result. The figures show that the baseline algorithm failed in removing lung and small intestine portions, and erroneously detects small
bowel segments due to collapse, indicated by arrows in the middle column. Our algorithm clearly outperforms the baseline.

When presented collapsed colons, conventional approaches

identify the rectum and the ascending colon and sequentially

add the colon components to minimize the inter-object dis-

tance. However, such methods are difficult to apply robustly

to the variations observed in real clinical data. We proposed

a semantic linking strategy that sequentially merges the colon

components based on their anatomical sequence. To achieve

this we employed a variant of the PS model to identify the rec-

tum and ascending colon objects together accurately. Secondly,

we build the semantic knowledge with a multi-class labeler

from the result of a region-level detection. The inter-object

distance guided by the semantic knowledge links the collapsed

colon objects sequentially from the rectum to ascending colon.

In the removal of AEC, we propose a hierarchical graph cut

method to model the dependencies of the regions within each

3D object: for each object, we construct a high-level graph to

skip the small volume regions and make the inference between

the salient regions. The labeling of the salient regions from the

high-level graph is passed to the low-level graph to initiate the

inference at the low level graph.

While the results are encouraging, future work could focus

on further reduction of both the false negatives and the false
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positives. In particular, false negative regions produced in

the first binary classifier step are unrecoverable in the graph

inference step that follows. Although our approach includes

114 discriminative features, informed by the literature, to

differentiate colon from non-colon, the problem of identify-

ing additional features to improve classification performance

remains. In addition, our method assigns more importance to

the salient regions of the colon by weighting the classifier

training based on the region volume. This provides greater

robustness for larger regions, but at the expense of smaller re-

gion classification performance. In future work we would like

to explore the possibility of training separate classifiers based

on region size; however, to do this would require additional

datasets beyond those used in this study. Currently, we are

most interested in applying the proposed colon segmentation

in a CAD pipeline, to evaluate its effect on polyp detection. We

expect a considerable improvement, particularly a reduction in

false positives produced in non-colon anatomy.

Through our experimental results, we demonstrate that mod-

eling the dependencies between the regions outperforms a pure

discriminative learning method at object-level, by improving

true detections and reducing extra-components in real, clinical

data. These encouraging results can improve the performance

of applications that rely on colon segmentation, such as fly-

through, CAD, and prone / supine registration.
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