8 research outputs found

    The Hetero-Hexameric Nature of a Chloroplast AAA+ FtsH Protease Contributes to Its Thermodynamic Stability

    Get PDF
    FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4∶2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that ‘type B’ subunits (FtsH2 and FtsH8) were 2–3 fold more abundant than ‘type A’ (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two ‘type A’ and four ‘type B’ subunits

    AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence

    No full text
    Degradation of the most abundant membrane protein on earth, the light-harvesting complex of Photosystem II (LHC II), is highly regulated under various environmental conditions, e.g., light stress, to prevent photochemical damage to the reaction center. We identified the LHC II degrading protease in Arabidopsis thaliana as a Zn(2+)-dependent metalloprotease, activated by the removal of unknown extrinsic factors, similar to the proteolytic activity directed against Lhcb3 in barley. By using a reversed genetic approach, the chloroplast-targeted protease FtsH6 was identified as being responsible for the degradation. T-DNA KO A. thaliana mutants, lacking ftsH6, were unable to degrade either Lhcb3 during dark-induced senescence or Lhcb1 and Lhcb3 during highlight acclimation. The A. thaliana ftsH6 gene has a clear orthologue in the genome of Populus trichocarpa. It is likely that FtsH6 is a general LHC II protease and that FtsH6-dependent LHC II proteolysis is a feature of all higher plants

    Signaling interactions during nodule development

    No full text
    Nitrogen fixing bacteria, collectively referred to as rhizobia, are able to trigger the organogenesis of a new organ on legumes, the nodule. The morphogenetic trigger is a Rhizobium-produced lipochitin-oligosaccharide called the Nod factor, which is necessary, and in some legumes sufficient, for triggering nodule development in the absence of the bacterium. Because plant development is substantially influenced by plant hormones, it has been hypothesized that plant hormones (mainly the classical hormones abscisic acid, auxin, cytokinins, ethylene and gibberellic acid) regulate nodule development. in recent years, evidence has shown that Nod factors might act in legumes by changing the internal plant hormone balance, thereby orchestrating the nodule developmental program. In addition, many nonclassical hormonal signals have been found to play a role in nodule development, some of them similar to signals involved in animal development. These compounds include peptide hormones, nitric oxide, reactive oxygen species, jasmonic acid, salicylic acid, uridine, flavonoids and Nod factors themselves. Environmental factors, in particular nitrate, also influence nodule development by affecting the plant hormone status. This review summarizes recent findings on the involvement of classical and nonclassical signals during nodule development with the aim of illustrating the multiple interactions existing between these compounds that have made this area so complicated to analyze

    Plastid Proteases

    No full text
    corecore