1,940 research outputs found

    Worst-case space radiation environments for geocentric missions

    Get PDF
    Worst-case possible annual radiation fluences of energetic charged particles in the terrestrial space environment, and the resultant depth-dose distributions in aluminum, were calculated in order to establish absolute upper limits to the radiation exposure of spacecraft in geocentric orbits. The results are a concise set of data intended to aid in the determination of the feasibility of a particular mission. The data may further serve as guidelines in the evaluation of standard spacecraft components. Calculations were performed for each significant particle species populating or visiting the magnetosphere, on the basis of volume occupied by or accessible to the respective species. Thus, magnetospheric space was divided into five distinct regions using the magnetic shell parameter L, which gives the approximate geocentric distance (in earth radii) of a field line's equatorial intersect

    Definition of ground test for verification of large space structure control

    Get PDF
    Directions regarding the analytical models were received. A counter balance arm with weights was added at the top of the ASTROMAST to offset the arm with the gimbals. In addition to this model, three more models were requested from MSFC: structure as in the revised model with the addition of lumped masses at bays 46 and 91 of the ASTROMAST; cantilevered cruciform structure with lumped masses at bays 46 and 91, and an all up cruciform structure with lumped masses at bays 46 and 91. Figures for each model and their corresponding natural frequencies and general mode shapes associated with these frequencies are included. The drawbar in use in the cruciform models must be incorporated into the antenna and ASTROMAST models. The total tensile load carrying capability of the ASTROMAST is approximately 840 pounds

    Development of high-emittance scales on thoriated nickel-chromium-aluminum-base alloys

    Get PDF
    The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation

    Environmental protection of titanium alloys at high temperatures

    Get PDF
    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking

    NASA-VCOSS dynamic test facility

    Get PDF
    The Large Space Structure Ground Test Facility under development at the NASA Marshall Space Flight Center in Huntsville, Alabama is described. The Ground Test Facility was established initially to test experimentally the control system to be used on the Solar Array flight Experiment. The structural dynamics of the selected test article were investigated, including the fidelity of the associated mathematical model. The facility must permit the investigation of structural dynamics phenomena and be able to evaluate candidate attitude control and vibration suppression techniques

    Inter-hemispheric linkages in climate change: Paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Nino Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Design of a digital controller for spinning flexible spacecraft

    Get PDF
    An approach to digital control system design is applied to the analysis and design of a practical onboard digital attitude control system for a class of spinning vehicles characterized by a rigid body and two connected flexible appendages. The approach used is to design a continuous-data control system that will provide a satisfactory system response. Then, using the digital redesign method, a digital controller with onboard digital computer is designed to provide a digital control system whose states are similar to those of the continuous system at sampling instants. The simplicity of application of this approach is indicated by example. The example, using spinning Skylab parameters, is used to substantiate the conclusions

    The Microsoft 2016 Conversational Speech Recognition System

    Full text link
    We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task

    Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Limit cycle analysis of large space telescope with CMG nonlinearity

    Get PDF
    The existence and characteristics of self-sustained oscillations were studied in the Large Space Telescope (LST) system due to the presence of nonlinear gimbal friction in the control moment gyroscopes (CMG's). A continuous data single-axis model of the LST is considered. A solid friction model is used to represent CMG gimbal friction. A rigorous mathematical model is derived for use in a continuous describing function analysis. Conditions for self-sustained oscillations are then determined
    corecore