1,705 research outputs found
Hysteresis in one-dimensional reaction-diffusion systems
We introduce a simple nonequilibrium model for a driven diffusive system with
nonconservative reaction kinetics which exhibits ergodicity breaking and
hysteresis in one dimension. These phenomena can be understood through a
description of the dominant stochastic many-body dynamics in terms of an
equilibrium single-particle problem, viz. the random motion of a shock in an
effective potential. This picture also leads to the exact phase diagram of the
system and suggests a new generic mechanism for "freezing by heating".Comment: 4 Pages, 5 figure
Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness
The adhesion of cells is mediated by membrane receptors that bind to
complementary ligands in apposing cell membranes. It is generally assumed that
the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane
adhesion zones is slower than the diffusion of unbound receptors and ligands.
We find that this slowing down is not only caused by the larger size of the
bound receptor-ligand complexes, but also by thermal fluctuations of the
membrane shape. We model two adhering membranes as elastic sheets pinned
together by receptor-ligand bonds and study the diffusion of the bonds using
Monte Carlo simulations. In our model, the fluctuations reduce the bond
diffusion constant in planar membranes by a factor close to 2 in the
biologically relevant regime of small bond concentrations.Comment: 6 pages, 5 figures; to appear in Europhysics Letter
The exceptional Herbig Ae star HD101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star
We obtained high-resolution, high signal-to-noise UVES and a few lower
quality HARPS spectra revealing the presence of resolved magnetically split
lines. HD101412 is the first Herbig Ae star for which the rotational Doppler
effect was found to be small in comparison to the magnetic splitting. The
measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean
quadratic field was found to vary in the range of 3.5 to 4.8kG. To determine
the period of variations, we used radial velocity, equivalent width, line
width, and line asymmetry measurements of variable spectral lines of several
elements, as well as magnetic field measurements. The most pronounced
variability was detected for spectral lines of He I and the iron peak elements,
whereas the spectral lines of CNO elements are only slightly variable. From
spectral variations and magnetic field measurements we derived a potential
rotation period P_rot=13.86d, which has to be proven in future studies with a
larger number of observations. It is the first time that the presence of
element spots is detected on the surface of a Herbig Ae/Be star. Our previous
study of Herbig Ae stars revealed a trend towards stronger magnetic fields for
younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to
a few other (non-statistical) studies claiming that magnetic Herbig Ae stars
are progenitors of the magnetic Ap stars. New developments in MHD theory show
that the measured magnetic field strengths are compatible with a current-driven
instability of toroidal fields generated by differential rotation in the
stellar interior. This explanation for magnetic intermediate-mass stars could
be an alternative to a frozen-in fossil field.Comment: 7 pages, 6 figures, 1 table, to appear in Astronomische Nachrichte
Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
Wigner crystals are prime candidates for the realization of regular electron
lattices under minimal requirements on external control and electronics.
However, several technical challenges have prevented their detailed
experimental investigation and applications to date. We propose an
implementation of two-dimensional electron lattices for quantum simulation of
Ising spin systems based on self-assembled Wigner crystals in transition-metal
dichalcogenides. We show that these semiconductors allow for minimally invasive
all-optical detection schemes of charge ordering and total spin. For incident
light with optimally chosen beam parameters and polarization, we predict a
strong dependence of the transmitted and reflected signals on the underlying
lattice periodicity, thus revealing the charge order inherent in Wigner
crystals. At the same time, the selection rules in transition-metal
dichalcogenides provide direct access to the spin degree of freedom via Faraday
rotation measurements.Comment: 15 pages, 12 figure
A Case Study of Success Factors for Data Warehouse Implementation and Adoption in Sales Planning
We present the case of the successful implementation of a data warehouse for support of the sales planning process in an Austrian company. We investigate the factors that contributed to the success of the project. The key findings of this case study are as follows. First, highly-qualified external consultants may compensate insufficient qualification of internal staff. Of particular importance in that case is communication between internal staff and external consultants. Second, user training compensates a lack of (perceived) usability of the software. Resistance of initially overwhelmed users may be overcome through training sessions. Finally, rather than acquire functionality that is not required, companies should ensure customizability of the acquired software, which is often more important than a plethora of features
Certain Uncertainties: Chaos and the Human Experience
Accompanies an exhibition held at the Bowdoin College Museum of Art from April 17 through June 2, 1996.
This brochure is published with funding from the Andrew W. Mellon Foundation. --Colophonhttps://digitalcommons.bowdoin.edu/art-museum-exhibition-catalogs/1048/thumbnail.jp
Mixed population of competing TASEPs with a shared reservoir of particles
We introduce a mean-field theoretical framework to describe multiple totally
asymmetric simple exclusion processes (TASEPs) with different lattice lengths,
entry and exit rates, competing for a finite reservoir of particles. We present
relations for the partitioning of particles between the reservoir and the
lattices: these relations allow us to show that competition for particles can
have non-trivial effects on the phase behavior of individual lattices. For a
system with non-identical lattices, we find that when a subset of lattices
undergoes a phase transition from low to high density, the entire set of
lattice currents becomes independent of total particle number. We generalize
our approach to systems with a continuous distribution of lattice parameters,
for which we demonstrate that measurements of the current carried by a single
lattice type can be used to extract the entire distribution of lattice
parameters. Our approach applies to populations of TASEPs with any distribution
of lattice parameters, and could easily be extended beyond the mean-field case.Comment: 12 pages, 8 figure
- …