378 research outputs found

    Air Flow in a Separating Laminar Boundary Layer

    Get PDF
    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment

    Jet Propulsion with Special Reference to Thrust Augmenters

    Get PDF
    An investigation of the possibility of using thrust augmented jets as prime movers was carried out. The augmentation was to be effected by allowing the jet to mix with the surrounding air in the presence of bodies which deflect the air set in motion by the jet

    A turbulence indicator utilizing the diffusion of heat

    Get PDF
    This report describes a method of determining the turbulence in wind tunnels. The effect of turbulence upon the diffusion of heat from a small electrically heated wire in an air stream was investigated. The turbulence of the stream was introduced by a series of geometrically similar screens placed one at a time across the upstream section of the tunnel. With the wire set at various distances from the screens, curves of temperature distribution were obtained by traversing the heated wake at a distance of 2 inches behind the wire with a small thermocouple

    Air Flow in the Boundary Layer of an Elliptic Cylinder

    Get PDF
    The boundary layer of an elliptic cylinder of major and minor axis 11.78 and 3.98 inches, respectively, was investigated in air stream in which the turbulence could be varied. Conditions were arranged so that the flow was two-dimensional with the major axis of the ellipse parallel to the undisturbed stream. Speed distributions across the boundary layer were determined with a hot-wire anemometer at a number of positions about the surface for the lowest and highest intensities of turbulence, with the air speed in both cases sufficiently high to produce a turbulent boundary layer over the downstream part of the surface. The magnitude and the frequency of the speed fluctuations in the boundary layer were also measured by the use of the conventional type of hot-wire turbulence apparatus. Stream turbulence was found to affect both the nature of transition from laminar to turbulent flow in the layer and the position on the surface at which transition occurred. Transition was then investigated in detail with stream turbulence of several different scales and intensities

    Effect of screens in wide-angle diffusers

    Get PDF
    An experimental investigation at low airspeeds was made of the filling effect observed when a screen or similar resistance is placed across a diffuser. The filling effect is found to be real in that screens can prevent separation or restore separated flow in diffusers even of extreme divergence and to depend principally on screen location and pressure-drop coefficient of the screen. Results are given for three different diffusers of circular cross section with a variety of screen arrangements. Effects of single screens and multiple screens are shown. The mechanics of the filling effect is explained, and possible efficiencies are discussed. Results of arrangements of multiple screens in wide-angle diffusers are given to show a possible application to damping screens as used in wind tunnels to reduce turbulence. (author

    Investigation of Separation of the Turbulent Boundary Layer

    Get PDF
    An investigation was conducted on a turbulent boundary layer near a smooth surface with pressure gradients sufficient to cause flow separation. The reynolds number was high, but the speeds were entirely within the incompressible flow range. The investigation consisted of measurements of mean flow, three components of turbulence intensity, turbulent shearing stress, and correlations between two fluctuation components at a point and between the same component of different points. The results are given in the form of tables and graphs. The discussion deals first with separation and then with the more fundamental question of basic concepts of turbulent flow

    Measurements of Intensity and Scale of Wind-Tunnel Turbulence and Their Relation to the Critical Reynolds Number of Spheres

    Get PDF
    The investigation of wind-tunnel turbulence, conducted at the National Bureau of Standards with the cooperation of the National Advisory Committee for Aeronautics, has been extended to include a new variable, namely, the scale of the turbulence. This report presents the results of a study of this new variable together with the intensity of the turbulence, and the effect of both on the critical Reynolds number of spheres
    corecore