2,430 research outputs found

    Locating an Imaging Radar in Canada for Identifying Spaceborne Objects

    Get PDF
    This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected

    Distribution of lipids in non-lamellar phases of their mixtures

    Full text link
    We consider a model of lipids in which a head group, characterized by its volume, is attached to two flexible tails of equal length. The phase diagram of the anhydrous lipid is obtained within self-consistent field theory, and displays, as a function of lipid architecture, a progression of phases: body-centered cubic, hexagonal, gyroid, and lamellar. We then examine mixtures of an inverted hexagonal forming lipid and a lamellar forming lipid. As the volume fractions of the two lipids vary, we find that inverted hexagonal, gyroid, or lamellar phases are formed. We demonstrate that the non-lamellar forming lipid is found preferentially at locations which are difficult for the lipid tails to reach. Variations in the volume fraction of each type of lipid tail are on the order of one to ten per cent within regions dominated by the tails. We also show that the variation in volume fraction is correlated qualitatively with the variation in mean curvature of the head-tail interface.Comment: 10 pages, 12 figures (better figures are available upon request), to appear in J. Chem. Phy

    Theory of Raft Formation by the Cross-Linking of Saturated or Unsaturated Lipids in Model Lipid Bilayers

    Get PDF
    AbstractWe consider the effect of cross-linking a small fraction of lipids, either saturated or unsaturated, in a mixture of saturated and unsaturated lipids and cholesterol. The change in phase behavior is examined utilizing a recent phenomenological model of the ternary system, which is extended to include a fourth component representing the cross-linked lipids. These lipids are taken to be identical to monomeric ones except for their reduced entropy of mixing. We find that even a relatively small amount of cross-linked lipids, less than 5 mol %, is sufficient to significantly expand the range of compositions within which there is coexistence between liquid-ordered and liquid-disordered phases. Equivalently, the cross-linking of lipids increases the liquid-liquid miscibility transition temperature, and therefore could bring about phase separation at a temperature at which, before cross-linking, there was only a single liquid phase

    Adsorption on carbon nanotubes: quantum spin tubes, magnetization plateaus, and conformal symmetry

    Full text link
    We formulate the problem of adsorption onto the surface of a carbon nanotube as a lattice gas on a triangular lattice wrapped around a cylinder. This model is equivalent to an XXZ Heisenberg quantum spin tube. The geometric frustration due to wrapping leads generically to four magnetization plateaus, in contrast to the two on a flat graphite sheet. We obtain analytical and numerical results for the magnetizations and transition fields for armchair, zig-zag and chiral nanotubes. The zig-zags are exceptional in that one of the plateaus has extensive zero temperature entropy in the classical limit. Quantum effects lift up the degeneracy, leaving gapless excitations which are described by a c=1c=1 conformal field theory with compactification radius quantized by the tube circumference.Comment: 5 pages, 6 figure

    Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3_3

    Full text link
    We apply ultrafast X-ray diffraction with femtosecond temporal resolution to monitor the lattice dynamics in a thin film of multiferroic BiFeO3_3 after above-bandgap photoexcitation. The sound-velocity limited evolution of the observed lattice strains indicates a quasi-instantaneous photoinduced stress which decays on a nanosecond time scale. This stress exhibits an inhomogeneous spatial profile evidenced by the broadening of the Bragg peak. These new data require substantial modification of existing models of photogenerated stresses in BiFeO3_3: the relevant excited charge carriers must remain localized to be consistent with the data

    Organizational downsizing: Constraining, cloning, learning

    Get PDF
    While downsizing rages through the U.S. economy, there is a great deal of uncertainty about its bottom-line effects. This uncertainty raises questions about why corporations have been so eager to engage in downsizing. In this article, we propose an answer to these questions. Three social forces, which we call constraining, cloning and learning, frequently provide a major impetus for downsizing. We describe these forces, and point out conditions that lead to the adoption of downsizing without due regard for its mixed consequences. We suggest methods to improve executives\u27 downsizing decision routines ... methods that should enhance the chances of achieving intended benefits

    Gallium interstitial contributions to diffusion in gallium arsenide

    Full text link
    Enthalpies of formation of gallium interstitials and all the other native point defects in gallium arsenide are calculated using the same well-converged \emph{ab initio} techniques. Using these results, equilibrium concentrations of these defects are computed as a function of chemical potential from the arsenic rich limit to the gallium rich limit and as a function of the doping level from pp-type to nn-type. Gallium interstitial diffusion paths and migration barriers for diffusion are determined for all the interstitial charge states which are favored for Fermi levels anywhere in the gap, and the charge states which dominate diffusion as a function of Fermi level are identified. The effects of chemical potential, doping level, and non-equilibrium defect concentrations produced by ion implantation or irradiation on gallium self-diffusion are examined. Results are consistent with experimental results across the ranges of doping and stoichometry where comparisons can be made. Finally, these calculations shed some light on the complex situation for gallium diffusion in gallium arsenide that is gallium-rich and doped heavily pp-type.Comment: 41 pages, 20 figure
    • …
    corecore