4,070 research outputs found

    A fast - Monte Carlo toolkit on GPU for treatment plan dose recalculation in proton therapy

    Get PDF
    In the context of the particle therapy a crucial role is played by Treatment Planning Systems (TPSs), tools aimed to compute and optimize the tratment plan. Nowadays one of the major issues related to the TPS in particle therapy is the large CPU time needed. We developed a software toolkit (FRED) for reducing dose recalculation time by exploiting Graphics Processing Units (GPU) hardware. Thanks to their high parallelization capability, GPUs significantly reduce the computation time, up to factor 100 respect to a standard CPU running software. The transport of proton beams in the patient is accurately described through Monte Carlo methods. Physical processes reproduced are: Multiple Coulomb Scattering, energy straggling and nuclear interactions of protons with the main nuclei composing the biological tissues. FRED toolkit does not rely on the water equivalent translation of tissues, but exploits the Computed Tomography anatomical information by reconstructing and simulating the atomic composition of each crossed tissue. FRED can be used as an efficient tool for dose recalculation, on the day of the treatment. In fact it can provide in about one minute on standard hardware the dose map obtained combining the treatment plan, earlier computed by the TPS, and the current patient anatomic arrangement

    Mixture distribution modelling of the sensitivities of a digital 3-axis MEMS accelerometers large batch

    Get PDF
    Huge quantities of low-cost analogue or digital MEMS sensors, in the order of millions per week, are produced by manufacturers. Their use is broad, from consumer electronic devices to Industry 4.0, Internet of Things and Smart Cities. In many cases, such sensors have to be calibrated by accredited laboratories to provide traceable measurements. However, at present, such a massive number of sensors cannot be calibrated and large-scale calibration systems and procedures are still missing. A first step to implementing these methods can be based on the distribution of the sensitivities of the large batches produced. Such distribution is also useful for sensor network end-users who need a single sensitivity, with the associated uncertainty, to be attributed to the whole network. Recently, a large batch of 100 digital 3-axis MEMS accelerometers was calibrated with a primary calibration system developed at INRiM and suitable for 3-axis accelerometers. Distributions of their sensitivities as a function of axis and frequency were analyzed and their non-normal behaviour was shown. However, in the preliminary phase of the study, the calibration uncertainties were not considered in these distributions. Therefore, in this paper, a mixture distribution modelling, based on Monte Carlo simulations and aimed at including the calibration uncertainties in the sensitivity distributions, is implemented and the resulting distributions are compared to the previous ones in histogram form. These distributions are also fitted with Johnson's unbounded and bimodal functions to get continuous distributions. This paper represents a further step towards the development of large-scale statistical calibration methods

    Treatment responses to antiangiogenetic therapy and chemotherapy in nonsecreting paraganglioma (PGL4) of urinary bladder with SDHB mutation: a case report

    Get PDF
    Paraganglioma (PGL) is a rare neuroendocrine tumor. Currently, the malignancy is defined as the presence of metastatic spread at presentation or during follow-up. Several gene mutations are listed in the pathogenesis of PGL, among which succinate dehydrogenase (SDHX), particularly the SDHB isoform, is the main gene involved in malignancy. A 55-year-old male without evidence of catecholamine secretion had surgery for PGL of the urinary bladder. After 1 year, he showed a relapse of disease and demonstrated malignant PGL without evidence of catecholamine secretion with a germline heterozygous mutation of succinate dehydrogenase B (SDHB). After failure of a second surgery for relapse, he started medical treatment with sunitinib daily but discontinued due to serious side effects. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapeutic regimen stopped the disease progression for 7 months. Conclusion: Malignant PGL is a very rare tumor, and SDHB mutations must be always considered in molecular diagnosis because they represent a critical event in the progression of the oncological disease. Currently, there are few therapeutic protocols, and it is often difficult, as this case demonstrates, to decide on a treatment option according to a reasoned set of choices. Abbreviations: CVD = cyclophosphamide, vincristine and dacarbazine, HIF-1a = hypoxia inducible factor 1 alpha, PGL = paraganglioma, SDH = succinate dehydrogenase, VEGF = vasoendothelial growth factor

    Dynamic calibration system for seismometers: Traceability from 0.03 Hz up to 30 Hz

    Get PDF
    Mechanical calibration and traceability of seismometers in operating conditions are still a technical challenge, since very low-frequency ranges (below 0.1 Hz) are involved, and sensors under investigation are generally heavy and bulky. Recently, within the vibration metrology field, some pioneering works proposed to evaluate the seismometers’ sensitivity by applying laboratory mechanical calibration procedures, against primary or secondary standards, according to the ISO 16063 methods. By following this path, at INRIM, it has been developed a suitable system for short period horizontal and vertical ground velocity calibration of 3-axis seismometers. The calibration system allows to directly evaluate the sensitivities of the 2 axes perpendicular to the gravity field, with respect to the horizontal ground velocity (S-waves), and to derive the sensitivity of the vertical axis, parallel to the gravity field, with respect to the vertical ground velocity (P-waves), in the frequency range between 0.03 Hz and 30 Hz

    Indentation modulus, indentation work and creep of metals and alloys at the macro-scale level: Experimental insights into the use of a primary Vickers hardness standard machine

    Get PDF
    In this work, the experimental method and the calculation model for the determination of indentation moduli, indentation work, and indentation creep of metallic materials, by means of macroscale-level forces provided by a primary hardness standard machine at the National Institute of Metrological Research (INRIM) at the at room temperature were described. Indentation moduli were accurately determined from measurements of indentation load, displacement, contact stiffness and hardness indentation imaging and from the slope of the indentation unloading curve by applying the Doerner-Nix linear model; indentation work, representing the mechanical work spent during the force application of the indentation procedure, was determined by calculating the areas under the loading–unloading indentation curve, through fitting experimental data with a polynomial law. Measurements were performed with a pyramidal indenter (Vickers test). The applied force was provided by a deadweight machine, and the related displacement was measured by a laser interferometric system. Applied forces and the occurring indentation depths were simultaneously measured: The resulting loading–unloading indentation curve was achieved. Illustrative tests were performed on metals and alloy samples. Discussion and comments on the suitability of the proposed method and analysis were reported

    Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector

    Get PDF
    Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)

    Quantum regime of free electron lasers starting from noise

    Get PDF
    We investigate the quantum regime of a high-gain free-electron laser starting from noise. In the first part, we neglect the radiation propagation and we formulate a quantum linear theory of the N-particle free-electron laser Hamiltonian model, quantizing both the radiation field and the electron motion. Quantum effects such as frequency shift, line narrowing, quantum limitation for bunching and energy spread, and minimum uncertainty states are described. Using a second-quantization formalism, we demonstrate quantum entanglement between the recoiling electrons and the radiation field. In the second part, we describe the field classically but we include propagation effects (i.e. slippage) and we demonstrate the novel regime of quantum SASE with high temporal coherence and discrete spectrum. Furthermore, we describe "quantum purification'' of SASE: the classical chaotic spiking behavior disappears and the spectrum becomes a series of discrete very narrow lines which correspond to transitions between discrete momentum eigenstates ( which originate high temporal coherence)

    Constraints on new physics from the quark mixing unitarity triangle

    Full text link
    The status of the Unitarity Triangle beyond the Standard Model including the most recent results on Delta m_s, on dilepton asymmetries and on width differences is presented. Even allowing for general New Physics loop contributions the Unitarity Triangle must be very close to the Standard Model result. With the new measurements from the Tevatron, we obtain for the first time a significant constraint on New Physics in the B_s sector. We present the allowed ranges of New Physics contributions to Delta F=2 processes, and of the time-dependent CP asymmetry in B_s to J/Psi phi decays.Comment: 5 pages, 4 figures. v2: numerical error in Delta Gamma_s/Gamma_s corrected. Plots and tables updated. v3: update after ICHEP06, final version published in Phys Rev Letter
    • …
    corecore