37 research outputs found

    Discrete Routh Reduction

    Get PDF
    This paper develops the theory of abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J2J_2 correction, as well as the double spherical pendulum. The J2J_2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a nontrivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the noncanonical nature of the symplectic structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added, fixed typo

    ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    Get PDF
    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker

    Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture.</p> <p>Methods</p> <p>RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines.</p> <p>Results</p> <p>Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death.</p> <p>Conclusion</p> <p>Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery.</p

    Net1 and Myeov: computationally identified mediators of gastric cancer

    Get PDF
    Gastric adenocarcinoma (GA) is a significant cause of mortality worldwide. The molecular mechanisms of GA remain poorly characterised. Our aim was to characterise the functional activity of the computationally identified genes, NET 1 and MYEOV in GA. Digital Differential Display was used to identify genes altered expression in GA-derived EST libraries. mRNA levels of a subset of genes were quantitated by qPCR in a panel of cell lines and tumour tissue. The effect of pro- and anti-inflammatory stimuli on gene expression was investigated. Cell proliferation and invasion were measured using in an in-vitro GA model following inhibition of expression using siRNA. In all, 23 genes not previously reported in association with GA were identified. Two genes, Net1 and Myeov, were selected for further analysis and increased expression was detected in GA tissue compared to paired normal tissue using quantitative PCR. siRNA-mediated downregulation of Net1 and Myeov resulted in decreased proliferation and invasion of gastric cancer cells in vitro. These functional studies highlight a putative role for NET1 and Myeov in the development and progression of gastric cancer. These genes may provide important targets for intervention in GA, evidenced by their role in promoting invasion and proliferation, key phenotypic hallmarks of cancer cells

    An 800-year reconstruction of Elbe River discharge and German Bight sea-surface salinity

    No full text
    On the basis of stable oxygen isotopes (d18O), the summer sea-surface salinity of the German Bight, southeastern North Sea, was determined for the past 800 years. In this near-coastal area, salinity is mainly dependent on the freshwater input of the Elbe River discharging its large catchment, which covers an area of 149 000 km2 of central Europe. Therefore, a proxy for Elbe River discharge was reconstructed at the same time, and consequently the d18O record is also mirroring variations in precipitation within the entire drainage basin. Significant variations in these palaeoenvironmental variables are linked to climatic changes
    corecore