1,012 research outputs found

    The quantum-classical transition in thermally seeded parametric downconversion

    Get PDF
    We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.Comment: 12 pages, 3 figure

    Wintertime thermal performance of green façades in a mediterranean climate

    Get PDF
    The increasing environmental issues have afforded opportunities for a widespread application of green systems in urban areas. Greening the building with green roofs and vertical green systems can be a design and retrofitting strategy to improve building energy performance in summer and in winter. Research efforts have been mainly concentrated on their energy saving function during warm periods. Green façades have a great application potential thanks to the space available in urban environment. The effect of green façades on building energy performance has been studied mainly for warm periods. In order to evaluate the effect during cold periods, an experiment was conducted in Bari, Italy, for two years. Pandorea jasminoides variegated and Rhyncospermum jasminoides were tested as evergreen climbing plants on walls; a third wall was used as control. The night-time temperature of the covered wall was higher than the uncovered wall temperature by up to 3.5°C, thanks to the presence of plants. The thermal barrier function performed by the vegetation layer was analysed. The influence of outdoor air temperature, relative humidity and wind velocity on the façades thermal effect during night-time was investigated. The experimental test demonstrated that both Pandorea jasminoides variegated and Rhyncospermum jasminoides are suitable for green façades in the Mediterranean climatic area during winter. The use of the green façades allowed increasing the thermal performance of the walls during night-time. They also reduced the surface temperature changes throughout the day

    Implementing a GIS-Based Digital Atlas of Agricultural Plastics to Reduce Their Environmental Footprint: Part II, an Inductive Approach.

    Get PDF
    Plastic pollution, largely perceived by the public as a major risk factor that strongly impacts sea life and preservation, has an even higher negative impact on terrestrial ecosystems. Indeed, quantitative data about plastic contamination on agricultural soils are progressively emerging in alarming ways. One of the main contributors to this pollution involves the mismanagement of agricultural plastic waste (APW), i.e., the residues from plastic material used to improve the productivity of agricultural crops, such as greenhouse covers, mulching films, irrigation pipes, etc. Wrong management of agricultural plastics during and after their working lives may pollute the agricultural soil and aquifers by releasing macro-, micro-, and nanoplastics, which could also enter into the human food chain. In this study, we aimed to develop a methodology for the spatial quantification of agricultural plastics to achieve sustainable post-consumer management. Through an inductive approach, based on statistical data from the agricultural census of the administrative areas of the Italian provinces, an agricultural plastic coefficient (APC) was proposed, implemented, and spatialized in a GIS environment, to produce a database of APW for each type of crop. The proposed methodology can be exported to other countries. It represents valuable support that could realize, in integration with other tools, an atlas of agricultural plastics, which may be a starting point to plan strategies and actions targeted to the reduction of the plastic footprint of agriculture

    Implementing a GIS-based Digital Atlas of Agricultural Plastics to Reduce Their Environmental Footprint. Part I: A Deductive Approach.

    Get PDF
    The agricultural sector has benefitted over the last century from several factors that have led to an exponential increase in its productive efficiency. The increasing use of new materials, such as plastics, has been one of the most important factors, as they have allowed for increased production in a simpler and more economical way. Various polymer types are used in different phases of the agricultural production cycle, but when their use is incorrectly managed, it can lead to different environmental impacts. In this study, an applied and simplified methodology to manage agricultural plastics monitoring and planning is proposed. The techniques used are based on quantification through the use of different datasets (orthophotos and satellite images) of the areas covered by plastics used for crop protection. The study area chosen is a part of the Ionian Coast of Southern Italy, which includes the most important municipalities of the Basilicata Region for fruit and vegetable production. The use of geographical techniques and observation methodologies, developed in an open‐source GIS environment, enabled accurate location of about 2000 hectares of agricultural land covered by plastics, as well as identification of the areas most susceptible to the accumulation of plastic waste. The techniques and the model implemented, due to its simplicity of use and reliability, can be applied by different local authorities in order to realize an Atlas of agricultural plastics, which would be applied for continuous monitoring, thereby enabling the upscaling of future social and ecological impact assessments, identification of new policy impacts, market searches, etc

    Greenhouse localized heating powered by a polygeneration system

    Get PDF
    Energy consumption in greenhouse heating could reach up to 90% of the total energy requirement depending on the type of greenhouse, environmental control equipment and location of the greenhouse. The use of climate conditioning technologies that exploit renewable energy and the application of passive systems to improve the energy efficiency and the sustainability of the greenhouse sector are recommended. During winter 2020-2021, an experimental test was carried out at the University of Bari in a Mediterranean greenhouse heated by a polygeneration system, composed of a solar system and an air-water heat pump. Three localized heating systems were tested to transfer thermal energy close to plants of Roman lettuce. Heating pipes were placed inside the cultivation substrate in the underground pipe system and on the cultivation substrate in the laid pipe system. The third system consists of metal plates heated by steel tubes and placed in the aerial area of plants. A weather climatic station and a sensor system interfaced with a data logger for continuous data acquisition and storage were used. The plate system was the best for air temperature rising, as it allowed an increase of 3.6% compared to the set-up without any localised heating system. The underground pipe system was the best for the soil heating, as it achieved a temperature increase of 92%. Localized soil heating systems contributed significantly to an earlier harvest by almost 2 weeks

    Reduction of Evapotranspiration in Microenvironment Conditions of Table Grape Vineyards Protected by Different Types of Plastic Covers

    Get PDF
    Saving water is a major challenge to increase environmental sustainability, particularly in semi-arid regions where most table grapes are produced. Water use is driven by atmospheric demand, which combines effects of solar radiation (prominent factor), wind, air temperature and humidity. Covering table grapes with transparent plastics is spread in many regions. Covers lower incoming solar radiation and wind speed, changing air temperature and humidity. This study assessed the effects of two plastic covers on reference evapotranspiration (ET0 ) in comparison to the open field. For two years, two vineyards (cv. Victoria) trained to overhead trellis systems (tendone) were covered with two transparent polyethylene sheets: an agrotextile fabric (C), and a commercial film (S). The sheet spectrophotometric properties were analyzed and the radiometric coefficients calculated. Micrometeorological data were recorded in the covered vineyards and in a nearby uncovered one. ET0 was calculated for June and July using the simplified Penman–Monteith equation. The coefficient of transmissivity to total photosynthetic radiation, a proxy of net radiation, was 73% for cover C and 83% for cover S. On average, ET0 decreased by 35% under cover C and 31% under cover S. Hence, in addition to providing protection from external agents, covers represent a valid tool for saving water in table grape viticulture; nevertheless, their radiometric properties should be considered and optimized to better achieve this goal

    Nonacceptability criteria and closure properties for the class of languages accepted by binary systolic tree automata

    Get PDF
    AbstractIn this paper a contribution is given to the solution of the problem of finding an inductive characterization of the class of languages accepted by binary systolic tree automata, L(BSTA), in terms of the closure of a class of languages with respect to certain operations. It is shown that L(BSTA) is closed with respect to some new operations: selective concatenation, restricted concatenation and restricted iteration. The known nonclosure of L(BSTA) with respect to classical language operations, like concatenation and Kleene iteration is proved here by using a new nonacceptability criterion

    Research Trends on Greenhouse Engineering Using a Science Mapping Approach

    Get PDF
    Horticultural protected cultivation has spread throughout the world as it has proven to be extremely effective. In recent years, the greenhouse engineering research field has become one of the main research topics within greenhouse farming. The main objectives of the current study were to identify the major research topics and their trends during the last four decades by analyzing the co-occurrence network of keywords associated with greenhouse engineering publications. A total of 3804 pertinent documents published, in 1981-2021, were analyzed and discussed. China, the United States, Spain, Italy and the Netherlands have been the most active countries with more than 36% of the relevant literature. The keyword cluster analysis suggested the presence of five principal research topics: energy management and storage; monitoring and control of greenhouse climate parameters; automation of greenhouse operations through the internet of things (IoT) and wireless sensor network (WSN) applications; greenhouse covering materials and microclimate optimization in relation to plant growth; structural and functional design for improving greenhouse stability, ventilation and microclimate. Recent research trends are focused on real-time monitoring and automatic control systems based on the IoT and WSN technologies, multi-objective optimization approaches for greenhouse climate control, efficient artificial lighting and sustainable greenhouse crop cultivation using renewable energy
    • 

    corecore