1,200 research outputs found

    Ab initio study of intermolecular potential of H2O trimer

    Get PDF
    Nonadditive contribution to the interaction energy in water trimer is analyzed in terms of Heitler–London exchange, SCF deformation, induction and dispersion nonadditivities. Nonadditivity originates mainly from the SCF deformation effect which is due to electric polarization. However, polarization does not serve as a universal mechanism for nonadditivity in water. In the double‐donor configuration, for example, the Heitler–London exchange contribution is the most important and polarization yields the wrong sign. Correlation effects do not contribute significantly to the nonadditivity. A detailed analysis of the pair potential is also provided. The present two‐body potential and its components are compared to the existing ab initio potentials (MCY) as well as to empirical ones (RWK2,TIP,SPC). The ways to improve these potentials are suggested

    Comparison Between Hydrogen and Halogen Bonds in Complexes of 6-OX-Fulvene with Pnicogen and Chalcogen Electron Donors

    Get PDF
    Quantum chemical calculations are applied to complexes of 6‐OX‐fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H‐bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order

    Crystal structures and proton dynamics in potassium and cesium hydrogen bistrifluoroacetate salts with strong symmetric hydrogen bonds

    Get PDF
    The crystal structures of potassium and cesium bistrifluoroacetates were determined at room temperature and at 20 K and 14 K, respectively, with the single crystal neutron diffraction technique. The crystals belong to the I2/a and A2/a monoclinic space groups, respectively, and there is no visible phase transition. For both crystals, the trifluoroacetate entities form dimers linked by very short hydrogen bonds lying across a centre of inversion. Any proton disorder or double minimum potential can be rejected. The inelastic neutron scattering spectral profiles in the OH stretching region between 500 and 1000 cm^{-1} previously published [Fillaux and Tomkinson, Chem. Phys. 158 (1991) 113] are reanalyzed. The best fitting potential has the major characteristics already reported for potassium hydrogen maleate [Fillaux et al. Chem. Phys. 244 (1999) 387]. It is composed of a narrow well containing the ground state and a shallow upper part corresponding to dissociation of the hydrogen bond.Comment: 31 pages, 7 figure

    Ab initio study of the intermolecular potential of Ar–H2O

    Get PDF
    The combination of supermolecular Møller–Plesset treatment with the perturbation theory of intermolecular forces is applied in the analysis of the potential‐energy surface of Ar–H2O. The surface is very isotropic with the lowest barrier for rotation of ∼35 cm−1 above the absolute minimum. The lower bound for De is found to be 108 cm−1 and the complex reveals a very floppy structure, with Ar moving freely from the H‐bridged structure to the coplanar and almost perpendicular arrangement of the C2 –water axis and the Ar–O axis, ‘‘T‐shaped’’ structure. This motion is almost isoenergetic (energy change of less than 2 cm−1 ). The H‐bridged structure is favored by the attractive induction and dispersion anisotropies; the T‐shaped structure is favored by repulsive exchange anisotropy. The nonadditive effect in the Ar2–H2O cluster was also calculated. Implications of our results on the present models of hydrophobic interactions are also discussed

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Intermolecular Potential of the Methane Dimer and Trimer

    Get PDF
    The Heitler–London (HL) exchange energy is responsible for the anisotropy of the pair potential in methane. The equilibrium dimer structure is that which minimizes steric repulsion between hydrogens belonging to opposite subsystems. Dispersion energy, which represents a dominating attractive contribution, displays an orientation dependence which is the mirror image of that for HL exchange. The three‐body correction to the pair potential is a superposition of HL and second‐order exchange nonadditivities combined with the Axilrod–Teller dispersion nonadditivity. A great deal of cancellation between these terms results in near additivity of methane interactions in the long and intermediate regions

    Structural and Functional Characterization of Sulfonium Carbon-Oxygen Hydrogen Bonding in the Deoxyamino Sugar Methyltransferase TyIM1

    Get PDF
    The N-methyltransferase TylM1 from Streptomyces fradiae catalyzes the final step in the biosynthesis of the deoxyamino sugar mycaminose, a substituent of the antibiotic tylosin. The high-resolution crystal structure of TylM1 bound to the methyl donor S-adenosylmethionine (AdoMet) illustrates a network of carbon-oxygen (CH•••O) hydrogen bonds between the substrate’s sulfonium cation and residues within the active site. These interactions include hydrogen bonds between the methyl and methylene groups of the AdoMet sulfonium cation and the hydroxyl groups of Tyr14 and Ser120 in the enzyme. To examine the functions of these interactions, we generated Tyr14 to phenylalanine (Y14F) and Ser120 to alanine (S120A)mutations to selectively ablate the CH•••O hydrogen bonding to AdoMet. The TylM1 S120A mutant exhibited a modest decrease in the catalytic efficiency relative to wild type (WT) enzyme, whereas the Y14F mutation resulted in an approximately 30-fold decrease in catalytic efficiency. In contrast, site-specific substitution of Tyr14 by the noncanonical amino acid p-aminophenylalanine partially restored activity comparable to the WT enzyme. Correlatively, quantum mechanical calculations of the activation barrier energies of WT TylM1 and the Tyr14 mutants suggest that substitutions which abrogate hydrogen bonding with the AdoMet methyl group impair methyl transfer. Together, these results offer insights into roles of CH•••O hydrogen bonding in modulating the catalytic efficiency of TylM1

    Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond

    Get PDF
    Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes
    corecore