406 research outputs found
Real-time diameter of the fetal aorta from ultrasound
The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 mm2, and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use
Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach
ABSTRACT: BACKGROUND: Schistosomiasis is a parasitic infection that continues to be a major public health problem in many developing countries being responsible for an estimated burden of at least 1.4 million disability-adjusted life years (DALYs) in Africa alone. However, morbidity due to schistosomiasis has been greatly reduced in some parts of the world, including Zanzibar. The Zanzibar government is now committed to eliminate urogenital schistosomiasis. Over the next 3--5 years, the whole at-risk population will be administered praziquantel (40 mg/kg) biannually. Additionally, snail control and behaviour change interventions will be implemented in selected communities and the impact measured in a randomized intervention trial. METHODS: In this 5-year research study, on both Unguja and Pemba islands, urogenital schistosomiasis will be assessed in 45 communities with urine filtration and reagent strips in 4,500 schoolchildren aged 9--12 years annually, and in 4,500 first-year schoolchildren and 2,250 adults in years 1 and 5. Additionally, from first-year schoolchildren, a finger-prick blood sample will be collected and examined for Schistosoma haematobium infection biomarkers. Changes in prevalence and infection intensity will be assessed annually. Among the 45 communities, 15 were randomized for biannual snail control with niclosamide, in concordance with preventive chemotherapy campaigns. The reduction of Bulinus globosus snail populations and S. haematobium-infected snails will be investigated. In 15 other communities, interventions triggering behaviour change have been designed and will be implemented in collaboration with the community. A change in knowledge, attitudes and practices will be assessed annually through focus group discussions and in-depth interviews with schoolchildren, teachers, parents and community leaders. In all 45 communities, changes in the health system, water and sanitation infrastructure will be annually tracked by standardized questionnaire-interviews with community leaders. Additional issues potentially impacting on study outcomes and all incurring costs will be monitored and recorded. DISCUSSION: Elimination of schistosomiasis has become a priority on the agenda of the Zanzibar government and the international community. Our study will contribute to identifying what, in addition to preventive chemotherapy, needs to be done to prevent, control, and ultimately eliminate schistosomiasis, and to draw lessons for current and future schistosomiasis elimination programmes in Africa and elsewhere.Trial registrationISRCTN4883768
Cytokine Storm in COVID-19: Immunopathogenesis and Therapy
A cytokine storm is a hyperinflammatory state secondary to the excessive production of cytokines by a deregulated immune system. It manifests clinically as an influenza-like syndrome, which can be complicated by multi-organ failure and coagulopathy, leading, in the most severe cases, even to death. The term cytokine storm was first used in 1993 to describe the graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. It was then reused to define the adverse syndromes secondary to the administration of immunostimulating agents, such as anti-CD28 antibodies or bioengineered immune cells, i.e., CAR T-cell therapy. Currently, the concept of cytokine storm has been better elucidated and extended to the pathogenesis of many other conditions, such as sepsis, autoinflammatory disease, primary and secondary hemophagocytic lymphohistiocytosis, and multicentric Castleman disease. Moreover, cytokine storm has recently emerged as a key aspect in the novel Coronavirus disease 2019, as affected patients show high levels of several key pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, TNF-α, IFN-γ, IP-10, GM-CSF, MCP-1, and IL-10, some of which also correlate with disease severity. Therefore, since the onset of the pandemic, numerous agents have been tested in the effort to mitigate the cytokine storm in COVID-19 patients, some of which are effective in reducing mortality, especially in critically ill patients, and are now becoming standards of care, such as glucocorticoids or some cytokine inhibitors. However, the challenge is still far from being met, and other therapeutic strategies are being tested in the hope that we can eventually overcome the disease
Rating the incidence of iatrogenic vascular injuries in thoracic and lumbar spine surgery as regards the approach: A PRISMA-based literature review
Purpose: To assess the rate, timing of diagnosis, and repairing strategies of vascular injuries in thoracic and lumbar spine surgery as their relationship to the approach. Methods: PubMed, Medline, and Embase databases were utilized for a comprehensive literature search based on keywords and mesh terms to find articles reporting iatrogenic vascular injury during thoracic and lumbar spine surgery. English articles published in the last ten years were selected. The search was refined based on best match and relevance. Results: Fifty-six articles were eligible, for a cumulative volume of 261 lesions. Vascular injuries occurred in 82% of instrumented procedures and in 59% during anterior approaches. The common iliac vein (CIV) was the most involved vessel, injured in 49% of anterior lumbar approaches. Common iliac artery, CIV, and aorta were affected in 40%, 28%, and 28% of posterior approaches, respectively. Segmental arteries were injured in 68% of lateral approaches. Direct vessel laceration occurred in 81% of cases and recognized intraoperatively in 39% of cases. Conclusions: Incidence of iatrogenic vascular injuries during thoracic and lumbar spine surgery is low but associated with an overall mortality rate up to 65%, of which less than 1% for anterior approaches and more than 50% for posterior ones. Anterior approaches for instrumented procedures are at risk of direct avulsion of CIV. Posterior instrumented fusions are at risk for injuries of iliac vessels and aorta. Lateral routes are frequently associated with lesions of segmental vessels. Suture repair and endovascular techniques are useful in the management of these severe complications
Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1–42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease
A spectroscopic and molecular dynamics study on the aggregation process of a long-acting lipidated therapeutic peptide: the case of semaglutide
The aggregation properties of semaglutide, a lipidated peptide drug agonist of the Glucagon-like peptide 1 receptor recently approved for the treatment of type 2 diabetes, have been investigated by spectroscopic techniques (UV-Vis absorption, steady-state and time-resolved fluorescence, and electronic circular dichroism) and molecular dynamics simulations. We show that in the micromolar concentration region, in aqueous solution, semaglutide is present as monomeric and dimeric species, with a characteristic monomer-to-dimer transition occurring at around 20 μM. The lipid chain stabilizes a globular morphology of the monomer and dimer species, giving rise to a locally well-defined polar outer surface where the lipid and peptide portions are packed to each other. At very long times, these peptide clusters nucleate the growth of larger aggregates characterized by blue luminescence and a β-sheet arrangement of the peptide chains. The understanding of the oligomerization and aggregation potential of peptide candidates is key for the development of long acting and stable drugs
A Rationale for Schistosomiasis Control in Elementary Schools of the Rainforest Zone of Pernambuco, Brazil
In 2001, a World Health Assembly resolution urged member states to ensure treatment against schistosomiasis and soil-transmitted helminthiasis in endemic areas with the goal of attaining a minimum target of at least 75% of all school-aged children by 2010. In the highly endemic Rainforest Zone of Pernambuco (ZMP), northeast Brazil, the Schistosomiasis Control Program has registered a cumulative coverage of only 20% of the population at risk, which jeopardizes the accomplishment of the minimum target for that area. Demographic and parasitological data from a representative municipality of the ZMP provide evidence that the current, community-based approach to control can be complemented with school-based actions. In the most troubled municipalities, individual diagnosis and treatment could be focused on school-aged children rather than whole populations without compromising the principles of the primary health care system. Local health and education teams should be encouraged to include school-based interventions to scale up coverage and achieve a rapid impact on infection
Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound
The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. In this work we present our attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional layer for the extraction of imaging features, a Convolution Gated Recurrent Unit (C-GRU) for enforcing the temporal coherence across video frames and exploiting the temporal redundancy of a signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. We present experimental evidence suggesting that the proposed architecture can reach an accuracy substantially superior to previously proposed methods, providing an average reduction of the mean squared error from 0.31mm2 (state-of-art) to 0.09mm2, and a relative error reduction from 8.1% to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real time clinical use. © Springer Nature Switzerland AG 2018
The role of SARS-COV-2 infection in promoting abnormal immune response and sepsis: A comparison between SARS-COV-2-related sepsis and sepsis from other causes
Background: COVID-19 caused by SARS-CoV-2 virus is characterized by respiratory compromise and immune
system involvement, even leading to serious disorders, such as cytokine storm.
Methods: We then conducted a literature review on the topic of sepsis and covid-19, and in parallel conducted an
experimental study on the histological finding of patients who died from SARS-Covid 19 infection and a control
group.
Results: Sepsis associated with covid-19 infection has some similarities and differences from that from other
causes.
Conclusion: In this paper the complex interplay between the 2 disorders was discussed, focusing on the similarities
and on the effect that one could have on the other. A preliminary experimental section that demonstrates the
multisystemic involvement in subjects who die from SARS-CoV-2 is also proposed
- …