10 research outputs found

    Expression of Human Frataxin Is Regulated by Transcription Factors SRF and TFAP2

    Get PDF
    Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression.We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2.We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia

    Harmonization of indirect reference intervals calculation by the Bhattacharya method

    No full text
    Objectives: The aim of this study was to harmonize the criteria for the Bhattacharya indirect method Microsoft Excel Spreadsheet for reference intervals calculation to reduce between-user variability and use these criteria to calculate and evaluate reference intervals for eight analytes in two different years. Methods: Anonymized laboratory test results from outpatients were extracted from January 1st 2018 to December 31st 2019. To assure data quality, we examined the monthly results from an external quality control program. Reference intervals were determined by the Bhattacharya method with the St Vincent's hospital Spreadsheet firstly using original criteria and then using additional harmonized criteria defined in this study. Consensus reference intervals using the additional harmonized criteria were calculated as the mean of four users' lower and upper reference interval results. To further test the operation criteria and robustness of the obtained reference intervals, an external user validated the Spreadsheet procedure. Results: The extracted test results for all selected laboratory tests fulfilled the quality criteria and were included in the present study. Differences between users in calculated reference intervals were frequent when using the Spreadsheet. Therefore, additional criteria for the Spreadsheet were proposed and applied by independent users, such as: to set central bin as the mean of all the data, bin size as small as possible, at least three consecutive bins and a high proportion of bins within the curve. Conclusions: The proposed criteria contributed to the harmonization of reference interval calculation between users of the Bhattacharya indirect method Spreadsheet.Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia

    No full text
    Friedreich ataxia (FRDA) is a common autosomal recessive degenerative disease (1/50,000 live births) characterized by a progressive gait and limb ataxia with lack of tendon reflexes in the legs, dysarthria and pyramidal weakness of the inferior limbs(1,2). Hypertrophic cardiomyopathy is observed in most FRDA patients. The gene associated with the disease has been mapped to chromosome 9q13 (ref. 3) and encodes a 210-amino-acid protein, frataxin. FRDA is caused primarily by a GAA repeat expansion within the first intron of the frataxin gene, which accounts for 98% of mutant alleles(4). The function of the protein is unknown, but an increased iron content has been reported in hearts of FRDA patients(5) and the mitochondria of yeast strains carrying a deleted frataxin gene counterpart (YFH1), suggesting that frataxin plays a major role in regulating mitochondrial iron transport(6.7). Here, we report a deficient activity of the iron-sulphur (Fe-S) cluster-containing subunits of mitochondrial respiratory complexes I, II and III in the endomyocardial biopsy of two unrelated FRDA patients. Aconitase, an iron-sulphur protein involved in iron homeostasis, was found to be deficient as well. Moreover, disruption of the YFH1 gene resulted in multiple Fe-S-dependent enzyme deficiencies in yeast. The deficiency of Fe-S-dependent enzyme activities in both FRDA patients and yeast should be related to mitochondrial iron accumulation, especially as Fe-S proteins are remarkably sensitive to free radicals(8). Mutated frataxin triggers aconitase and mitochondrial Fe-S respiratory enzyme deficiency in FRDA, which should therefore be regarded as a mitochondrial disorder

    POSTER VIEWING SESSION - ANDROLOGY

    No full text
    corecore