123 research outputs found

    Hybrid Quantum System of a Nanofiber Mode Coupled to Two Chains of Optically Trapped Atoms

    Full text link
    A tapered optical nanofiber simultaneously used to trap and optically interface of cold atoms through evanescent fields constitutes a new and well controllable hybrid quantum system. The atoms are trapped in two parallel 1D optical lattices generated by suitable far blue and red detuned evanescent field modes very close to opposite sides of the nanofiber surface. Collective electronic excitations (excitons) of each of the optical lattices are resonantly coupled to the second lattice forming symmetric and antisymmetric common excitons. In contrast to the inverse cube dependence of the individual atomic dipole-dipole interaction, we analytically find an exponentially decaying coupling strength with distance between the lattices. The resulting symmetric (bright) excitons strongly interact with the resonant nanofiber photons to form fiber polaritons, which can be observed through linear optical spectra. For large enough wave vectors the polariton decay rate to free space is strongly reduced, which should render this system ideal for the realization of long range quantum communication between atomic ensembles.Comment: 9 pages, 9 figure

    Optical Properties of Collective Excitations for Finite Chains of Trapped Atoms

    Full text link
    Resonant dipole-dipole interaction modifies the energy and decay rate of electronic excitations for finite one dimensional chains of ultracold atoms in an optical lattice. We show that collective excited states of the atomic chain can be divided into dark and bright modes, where a superradiant mode with an enhanced collective effective dipole dominates the optical scattering. Studying the generic case of two chain segments of different length and position exhibits an interaction blockade and spatially structured light emission. Ultimately, an extended system of several interfering segments models a long chain with randomly distributed defects of vacant sites. The corresponding emission pattern provides a sensitive tool to study structural and dynamical properties of the system.Comment: 8 pages, 12 figure

    The U-shaped relationship between parental age and the risk of bipolar disorder in the offspring: A systematic review and meta-analysis

    Get PDF
    Parenthood age may affect the risk for the development of different psychiatric disorders in the offspring, including bipolar disorder (BD). The present systematic review and meta-analysis aimed to appraise the relationship between paternal age and risk for BD and to explore the eventual relationship between paternal age and age at onset of BD. We searched the MEDLINE, Scopus, Embase, PsycINFO online databases for original studies from inception, up to December 2021. Random-effects meta-analyses were conducted. Sixteen studies participated in the qualitative synthesis, of which k = 14 fetched quantitative data encompassing a total of 13,424,760 participants and 217,089 individuals with BD. Both fathers [adjusted for the age of other parent and socioeconomic status odd ratio – OR = 1.29(95%C.I. = 1.13–1.48)] and mothers aged ≤ 20 years [(OR = 1.23(95%C.I. = 1.14–1.33)] had consistently increased odds of BD diagnosis in their offspring compared to parents aged 25–29 years. Fathers aged ≥ 45 years [adjusted OR = 1.29 (95%C.I. = 1.15–1.46)] and mothers aged 35–39 years [OR = 1.10(95%C.I. = 1.01–1.19)] and 40 years or older [OR = 1.2(95% C.I. = 1.02–1.40)] likewise had inflated odds of BD diagnosis in their offspring compared to parents aged 25–29 years. Early and delayed parenthood are associated with an increased risk of BD in the offspring. Mechanisms underlying this association are largely unknown and may involve a complex interplay between psychosocial, genetic and biological factors, and with different impacts according to sex and age range. Evidence on the association between parental age and illness onset is still tentative but it points towards a possible specific effect of advanced paternal age on early BD-onset

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    Rationale and Methods for the National Tuberculosis Genotyping and Surveillance Network

    Get PDF
    Our understanding of tuberculosis (TB) transmission dynamics has been refined by genotyping of Mycobacterium tuberculosis strains. The National Tuberculosis Genotyping and Surveillance Network was designed and implemented to systematically evaluate the role of genotyping technology in improving TB prevention and control activities. Genotyping proved a useful adjunct to investigations of outbreaks, unusual clusters, and laboratory cross-contamination

    Multidrug-resistant Mycobacterium tuberculosis in HIV-Infected Persons, Peru

    Get PDF
    During 1999 to 2000, we identified HIV-infected persons with new episodes of tuberculosis (TB) at 10 hospitals in Lima-Peru and a random sample of other Lima residents with TB. Multidrug-resistant (MDR)-TB was documented in 35 (43%) of 81 HIV-positive patients and 38 (3.9%)of 965 patients who were HIV-negative or of unknown HIV status (p < 0.001). HIV-positive patients with MDR-TB were concentrated at three hospitals that treat the greatest numbers of HIV-infected persons with TB. Of patients with TB, those with HIV infection differed from those without known HIV infection in having more frequent prior exposure to clinical services and more frequent previous TB therapy or prophylaxis. However, MDR-TB in HIV-infected patients was not associated with previous TB therapy or prophylaxis. MDR-TB is an ongoing problem in HIV-infected persons receiving care in public hospitals in Lima and Callao; they represent sentinel cases for a potentially larger epidemic of nosocomial MDR-TB

    The trend of susceptibilities to amphotericin B and fluconazole of Candida species from 1999 to 2002 in Taiwan

    Get PDF
    BACKGROUND: Candida species have various degrees of susceptibility to common antifungal drugs. The extent of resistance to amphotericin B and fluconazole of Candida glabrata isolates causing candidemia has been reported. Active surveillance may help us to monitor the trend of susceptibility to antifungal drugs and to determine if there is an emerging co-resistance to both drugs of Candida species, specifically, of C. glabrata in Taiwan. METHODS: The susceptibilities to amphotericin B and fluconazole of Candida species collected in 1999 and 2002 of the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) were determined by the microdilution method. RESULTS: The antifungal susceptibilities of 342 and 456 isolates collected from 11 hospitals participating in both TSARY 1999 and TSARY 2002, respectively, have been determined. The resistance rate to amphotericin B has increased from 0.3% in the TSARY1999 to 2.2% in the TSARY 2002. In contrast, the resistance rate to fluconazole has decreased from 8.8% to 2.2%. Nevertheless, significantly more C. glabrata isolates were not susceptible to fluconazole in the TSARY 2002 (47.4%) than that in the TSARY 1999 (20.8%). There were 9.8% and 11% of C. glabrata isolates having susceptible-dose dependent and resistant phenotype to fluconazole in the TSARY 1999, verse 45.3% and 2.1% in the TSARY 2002. CONCLUSION: There was an increase of resistance rate to amphotericin B in C. glabrata. On the other hand, although the resistance rate to fluconazole has decreased, almost half of C. glabrata isolates were not susceptible to this drug. Hence, continuous monitoring the emerging of co-resistance to both amphotericin B and fluconazole of Candida species, specifically, of C. glabrata, will be an important early-warning system

    Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle

    Get PDF
    Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis

    A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod

    Get PDF
    Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion

    Impact of DOTS expansion on tuberculosis related outcomes and costs in Haiti

    Get PDF
    BACKGROUND: Implementation of the World Health Organization's DOTS strategy (Directly Observed Treatment Short-course therapy) can result in significant reduction in tuberculosis incidence. We estimated potential costs and benefits of DOTS expansion in Haiti from the government, and societal perspectives. METHODS: Using decision analysis incorporating multiple Markov processes (Markov modelling), we compared expected tuberculosis morbidity, mortality and costs in Haiti with DOTS expansion to reach all of the country, and achieve WHO benchmarks, or if the current situation did not change. Probabilities of tuberculosis related outcomes were derived from the published literature. Government health expenditures, patient and family costs were measured in direct surveys in Haiti and expressed in 2003 US.RESULTS:Startingin2003,DOTSexpansioninHaitiisanticipatedtocost. RESULTS: Starting in 2003, DOTS expansion in Haiti is anticipated to cost 4.2 million and result in 63,080 fewer tuberculosis cases, 53,120 fewer tuberculosis deaths, and net societal savings of $131 million, over 20 years. Current government spending for tuberculosis is high, relative to the per capita income, and would be only slightly lower with DOTS. Societal savings would begin within 4 years, and would be substantial in all scenarios considered, including higher HIV seroprevalence or drug resistance, unchanged incidence following DOTS expansion, or doubling of initial and ongoing costs for DOTS expansion. CONCLUSION: A modest investment for DOTS expansion in Haiti would provide considerable humanitarian benefit by reducing tuberculosis-related morbidity, mortality and costs for patients and their families. These benefits, together with projected minimal Haitian government savings, argue strongly for donor support for DOTS expansion
    corecore