492 research outputs found

    Response of Poaceous Weeds in Wheat to Post-Emergence Herbicides

    Get PDF
    Poaceous weeds are prolific and competitive in winter crops, but they are more insidious in wheat due to their similar morphology and growing requirements. Herbicides are effective and efficient tools of weed management, however, they are vulnerable to resistance, and herbicides with different modes of action might check the dominance of a particular weed flora. The current study was undertaken to see the response of three poaceous weeds viz., Phalaris minor, Avena fatua and Lolium temulentum, to herbicides Isoproturon, Topik (Clodinafop-p) and Puma Super (Fenoxaprop-p). Completely randomized design with two factor treatments (weeds, herbicides) and eight replications was employed. Data were recorded on chlorotic and necrotic effects of herbicides on weeds, and percent mortality at the time interval of 14, 21 and 28 days after the application of herbicides. Dry biomass weight of weeds was recorded at 30 days after the treatments. Results indicated that all the parameters were affected significantly over the period of time. Maximum counts of chlorotic (2.16) and necrotic (2.97) weeds were observed at the 21st day of treatment. The highest mortality (31.1 %) was recorded at 21st day after the application of herbicides. Phalaris minor was the most resistant weed to herbicides showing the lowest mortality (only 17.7 %) compared to other two weeds. Maximum dry weight of weeds was recorded in control while a minimum of 0.456 g dry weight was observed where Topik (Clodinafop-p) was applied. For the effective control of P. minor, A. fatua and L. temulentum weeds in wheat crop, Topik (15 WP) @ 0.37 kg a.i. ha-1 was proved to be the most suitable herbicide applied at 3-4 foliar stage

    Case Report: Chemotherapy Indication in a Case of Neurofibromatosis Type 1 Presenting Optic Pathway Glioma: A One-Year Clinical Case Study Using Differential Tractography Approach

    Get PDF
    Neurofibromatosis type 1 (NF1) is associated with peripheral and central nervous system tumors. It is noteworthy that the regions in which these tumors frequently arise are the optic pathways (OPs) and the brainstem. Thus, we decided to trace the procedure of diffusion Magnetic Resonance Imaging (dMRI) alterations along with Short-Wavelength Automated Perimetry (SWAP) examinations of the OPs after surgery and chemotherapy over 1 year, which enabled us to evaluate chemotherapy's efficacy in an NF1 patient with an OP tumor. In this study, a 25-year-old woman with NF1 and left optic radiation (OR) glioma underwent surgery to remove the glioma. Immunohistochemistry (IHC) revealed a Pilocytic Astrocytoma (PA) WHO grade I. Post-operation chemotherapy done using nine treatment cycles of administering Temozolomide (TMZ) for 5 days every 4 weeks. Applying the region of interest (ROI) differential tractography method and SWAP four times every 3 months allowed us to follow the patient's visual acuity alterations longitudinally. The differential deterministic tractography method and statistical analyses enabled us to discover the white matter (WM) tracts anisotropy alterations over time. Furthermore, statistical analyses on the SWAP results along time illustrated possible alterations in visual acuity. Then, we could compare and associate the findings with the SWAP examinations and patient symptoms longitudinally. Statistical analyses of SWAP tests revealed a significant improvement in visual fields, and longitudinal differential tractography showed myelination and dense axonal packing in the left OR after 1 year of treatment. In this study, we examined an old hypothesis suggesting that chemotherapy is more effective than radiotherapy for NF1 patients with OP gliomas (OPGs) because of the radiation side effects on the visual field, cognition, and cerebrovascular complications. Our longitudinal clinical case study involving dMRI and SWAP on a single NF1-OPG patient showed that chemotherapy did not suppress the OP myelination over time. However, it should be noted that this is a clinical case study, and, therefore, the generalization of results is limited. Future investigations might focus on genetic-based imaging, particularly in more cases. Further, meta-analyses are recommended for giving a proper Field Of View (FOV) to researchers as a subtle clue regarding precision medicine. © Copyright © 2021 Pajavand, Sharifi, Anvari, Bidari-Zerehpoosh, Shamsi, Nateghinia and Meybodi

    Bandgap determination from individual orthorhombic thin cesium lead bromide nanosheets by electron energy-loss spectroscopy

    Get PDF
    Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their high photoluminescence quantum yield and narrow emission line widths. Particularly attractive is the possibility to vary the bandgap as a function of the halide composition and the size or shape of the crystals at the nanoscale. Here we present an aberration-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS) study of extended nanosheets of CsPbBr3. We demonstrate their orthorhombic crystal structure and their lateral termination with Cs–Br planes. The bandgaps are measured from individual nanosheets, avoiding the effect of the size distribution which is present in standard optical spectroscopy techniques. We find an increase of the bandgap starting at thicknesses below 10 nm, confirming the less marked effect of 1D confinement in nanosheets compared to the 3D confinement observed in quantum dots, as predicted by density functional theory calculations and optical spectroscopy data from ensemble measurements

    Gamma-Ray Protection Properties of Bismuth-Silicate Glasses Against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study

    Full text link
    This study aimed to perform an investigation for the potential implementation of bismuth silicate glasses as novel shield equipment instead of ordinary shields in nuclear medicine facilities. Accordingly, a group of Bi2O3 reinforced silicate glass system were investigated and compared with ordinary shields in terms of their gamma-ray attenuation properties in diagnostic nuclear medicine radioisotope energies emitted from99mTc,111 In,67Ga,123 I,131 I,81mKr,201Tl,133Xe. Mass attenuation coefficient (µm) results for glass samples were calculated comparatively with the XCOM program and MCNPX code. The gamma-ray attenuation parameters such as half value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective atomic number (Zeff ) were obtained in the diagnostic gamma ray energy range from 75 to 336 keV. To confirm the attenuation performance of superior sample, obtained results were extensively compared with ordinary shielding materials. According to the results obtained, BISI6 glass sample with the highest Bi2O3 additive has an excellent gamma-ray protection. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program

    Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue

    Get PDF
    Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT

    A framework for intelligent policy decision making based on a government data hub

    Get PDF
    Author ProofThe e-Oman Integration Platform is a data hub that enables data exchanges across government in response to transactions. With millions of transactions weekly, and thereby data exchanges, we propose to investigate the potential of gathering intelligence from these linked sources to help government officials make more informed decisions. A key feature of this data is the richness and accuracy, which increases the value of the learning outcome when augmented by other big and open data sources. We consider a high-level framework within a government context, taking into account issues related to the definition of public policies, data privacy, and the potential benefits to society. A preliminary, qualitative validation of the framework in the context of e-Oman is presented. This paper lays out foundational work into an ongoing research to implement government decision-making based on big data.“SmartEGOV: Harnessing EGOV for Smart Governance (Foundations, Methods, Tools)/NORTE-01-0145-FEDER-000037”, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (EFDR

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    Hemoglobin E syndromes in Pakistani population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemoglobin E is an important hemoglobin variant with a worldwide distribution. A number of hemoglobinopathies have been reported from Pakistan. However a comprehensive description of hemoglobin E syndromes for the country was never made. This study aimed to describe various hemoglobin E disorders based on hematological parameters and chromatography. The sub-aim was to characterize hemoglobin E at molecular level.</p> <p>Methods</p> <p>This was a hospital based study conducted prospectively for a period of one year extending from January 1 to December 31, 2008. EDTA blood samples were analyzed for completed blood counts and hemoglobin variants through automated hematology analyzer and Bio-Rad beta thalassaemia short program respectively. Six samples were randomly selected to characterize HbE at molecular level through RFLP-PCR utilizing <it>Mnl</it>I restriction enzyme.</p> <p>Results</p> <p>During the study period, 11403 chromatograms were analyzed and Hb E was detected in 41 (or 0.36%) samples. Different hemoglobin E syndromes identified were HbEA (n = 20 or 49%), HbE/β-thalassemia (n = 14 or 34%), HbEE (n = 6 or 15%) and HbE/HbS (n = 1 or 2%). Compound heterozygosity for HbE and beta thalassaemia was found to be the most severely affected phenotype. RFLP-PCR utilizing <it>Mnl</it>I successfully characterized HbE at molecular level in six randomly selected samples.</p> <p>Conclusions</p> <p>Various HbE phenotypes are prevalent in Pakistan with HbEA and HbE/β thalassaemia representing the most common syndromes. Chromatography cannot only successfully identify hemoglobin E but also assist in further characterization into its phenotype including compound heterozygosity. Definitive diagnosis of HbE can easily be achieved through RFLP-PCR.</p

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    Get PDF
    Purpose: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. Methods: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. Results: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. Conclusion: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration

    Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects

    Get PDF
    The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC−MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC−MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging
    corecore