664 research outputs found

    Some aspects of dispersive horizons: lessons from surface waves

    Full text link
    Hydrodynamic surface waves propagating on a moving background flow experience an effective curved space-time. We discuss experiments with gravity waves and capillary-gravity waves in which we study hydrodynamic black/white-hole horizons and the possibility of penetrating across them. Such possibility of penetration is due to the interaction with an additional "blue" horizon, which results from the inclusion of surface tension in the low-frequency gravity-wave theory. This interaction leads to a dispersive cusp beyond which both horizons completely disappear. We speculate the appearance of high-frequency "superluminal" corrections to be a universal characteristic of analogue gravity systems, and discuss their relevance for the trans-Planckian problem. We also discuss the role of Airy interference in hybridising the incoming waves with the flowing background (the effective spacetime) and blurring the position of the black/white-hole horizon.Comment: 29 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Horizon effects for surface waves in wave channels and circular jumps

    Full text link
    Surface waves in classical fluids experience a rich array of black/white hole horizon effects. The dispersion relation depends on the characteristics of the fluid (in our case, water and silicon oil) as well as on the fluid depth and the wavelength regime. In some cases, it can be tuned to obtain a relativistic regime plus high-frequency dispersive effects. We discuss two types of ongoing analogue white-hole experiments: deep water waves propagating against a counter-current in a wave channel and shallow waves on a circular hydraulic jump.Comment: 4 pages, 2 figs. To appear in: Proceedings of the Spanish Relativity Meeting (ERE2010

    Observation of noise correlated by the Hawking effect in a water tank

    Get PDF
    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number Fmax≈0.85F_{\rm max} \approx 0.85 reached above a localised obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.Comment: 11 pages, 14 figures. several points clarified; two new subsections in the Supplemental Material on the wave equation and the links with experiments in BEC

    Modelling the electric field applied to a tokamak

    Full text link
    The vector potential for the Ohmic heating coil system of a tokamak is obtained in semi-analytical form. Comparison is made to the potential of a simple, finite solenoid. In the quasi-static limit, the time rate of change of the potential determines the induced electromotive force through the Maxwell-Lodge effect. Discussion of the gauge constraint is included.Comment: 13 pages, 7 figures, final versio

    Visco-elastic Cosmology for a Sparkling Universe?

    Get PDF
    We show the analogy between a generalization of the Rayleigh-Plesset equation of bubble dynamics including surface tension, elasticity and viscosity effects with a reformulation of the Friedmann-Lemaître set of equations describing the expansion of space in cosmology assuming a homogeneous and isotropic universe. By comparing both fluid and cosmic equations, we propose a bold generalization of the newly-derived cosmic equation mapping three continuum mechanics contributions. Conversely, the addition of a cosmological constant-like term in the fluid equation would lead also to a new phenomenology. Our work is purely speculative and does not rely on any observations or theoretical derivations from first principles

    Mode-selective quantization and multimodal effective models for spherically layered systems

    Full text link
    We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, intrinsic losses as well as the positions of an arbitrary number of quantum emitters. The method is presented through the example of a spherically symmetric, non-magnetic, arbitrarily layered system. We follow it up by a framework to project the system on simpler, effective cavity QED models. Maintaining a well-defined connection to the original quantization, we derive the emerging effective quantities from the full, mode-selective model in a mathematically consistent way. We discuss the uses and limitations of these effective models

    Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: A hydrodynamic white hole

    Full text link
    We provide an experimental demonstration that the circular hydraulic jump represents a hydrodynamic white hole or gravitational fountain (the time-reverse of a black hole) by measuring the angle of the Mach cone created by an object in the "supersonic" inner flow region. We emphasise the general character of this gravitational analogy by showing theoretically that the white hole horizon constitutes a stationary and spatial saddle-node bifurcation within dynamical-systems theory. We also demonstrate that the inner region has a "superluminal" dispersion relation, i.e., that the group velocity of the surface waves increases with frequency, and discuss some possible consequences with respect to the robustness of Hawking radiation. Finally, we point out that our experiment shows a concrete example of a possible "transplanckian distortion" of black/white holes.Comment: 5 pages, 5 figures. New "transplanckian effect" described. Several clarifications, additional figures and references. Published versio

    Hawking tunneling and boomerang behaviour of massive particles with E < m

    Get PDF
    Copyright © 2012 American Institute of PhysicsTowards New Paradigms: Proceeding of the Spanish Relativity Meeting 2011 (ERE2011), 29 August–2 September 2011, Madrid, SpainMassive particles are radiated from black holes through the Hawking mechanism together with the more familiar radiation of massless particles. For E ≥ m, the emission rate is identical to the massless case. But E < m particles can also tunnel across the horizon. A study of the dispersion relation and wave packet simulations show that their classical trajectory is similar to that of a boomerang. The tunneling formalism is used to calculate the probability for detecting such E < m particles, for a Schwarzschild black hole of astrophysical size or in an analogue gravity experiment, as a function of the distance from the horizon and the energy of the particle

    Semiclassical analysis of dark-state transient dynamics in waveguide circuit QED

    Get PDF
    The interaction between superconducting qubits and one-dimensional microwave transmission lines has been studied experimentally and theoretically in the past two decades. In this work, we investigate the spontaneous emission of an initially excited artificial atom which is capacitively coupled to a semi-infinite transmission line, shorted at one end. This configuration can be viewed as an atom in front of a mirror. The distance between the atom and the mirror introduces a time delay in the system, which we take into account fully. When the delay time equals an integer number of atom oscillation periods, the atom converges into a dark state after an initial decay period. The dark state is an effect of destructive interference between the reflected part of the field and the part directly emitted by the atom. Based on circuit quantization, we derive linearized equations of motion for the system and use these for a semiclassical analysis of the transient dynamics. We also make a rigorous connection to the quantum optics system-reservoir approach and compare these two methods to describe the dynamics. We find that both approaches are equivalent for transmission lines with a low characteristic impedance, while they differ when this impedance is higher than the typical impedance of the superconducting artificial atom

    Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations

    Get PDF
    In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom\u27s transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes
    • …
    corecore