26 research outputs found
A view of Neural Networks as dynamical systems
We consider neural networks from the point of view of dynamical systems
theory. In this spirit we review recent results dealing with the following
questions, adressed in the context of specific models.
1. Characterizing the collective dynamics; 2. Statistical analysis of spikes
trains; 3. Interplay between dynamics and network structure; 4. Effects of
synaptic plasticity.Comment: Review paper, 51 pages, 10 figures. submitte
A discrete time neural network model with spiking neurons II. Dynamics with noise
We provide rigorous and exact results characterizing the statistics of spike
trains in a network of leaky integrate and fire neurons, where time is discrete
and where neurons are submitted to noise, without restriction on the synaptic
weights. We show the existence and uniqueness of an invariant measure of Gibbs
type and discuss its properties. We also discuss Markovian approximations and
relate them to the approaches currently used in computational neuroscience to
analyse experimental spike trains statistics.Comment: 43 pages - revised version - to appear il Journal of Mathematical
Biolog
Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals
Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly
concentrated on vertebrates, with significantly less attention paid to understanding potential
endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all
known animal species and are critical to ecosystem structure and function, it remains essential to
close this gap in knowledge and research. The lack of progress regarding endocrine disruption in
invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and
hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3)
the irrelevance to most invertebrates of the proposed activity-based biological indicators for
endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and
ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have
aimed at addressing some of these issues. The present review serves as an update to a previous
publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al.,
2004a). It summarizes recent investigative efforts that have significantly advanced our
understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and
transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation
Middle East - North Africa and the millennium development goals : implications for German development cooperation
Closed-loop controlled combustion is a promising technique to improve the overall performance of internal combustion engines and Diesel engines in particular. In order for this technique to be implemented some form of feedback from the combustion process is required. The feedback signal is processed and from it combustionrelated parameters are computed. These parameters are then fed to a control process which drives a series of outputs (e.g. injection timing in Diesel engines) to control their values. This paper’s focus lies on the processing and computation that is needed on the feedback signal before this is ready to be fed to the control process as well as on the electronics necessary to support it. A number of feedback alternatives are briefly discussed and for one of them, the in-cylinder pressure sensor, the CA50 (crank angle in which the integrated heat release curve reaches its 50% value) and the IMEP (Indicated Mean Effective Pressure) are identified as two potential control variables. The hardware architecture of a system capable of calculating both of them on-line is proposed and necessary feasibility size and speed considerations are made by implementing critical blocks in VHDL targeting a flash-based Actel ProASIC3 automotive-grade FPGA
First observation of krill spawning in the high Arctic Kongsfjorden, west Spitsbergen
In the past, two euphausiid species prevailed in the high Arctic Kongsfjorden, the arcto-boreal Thysanoessa
inermis (Kroeyer, 1846) and Thysanoessa raschii (Sars. 1964). Both were considered expatriates from the
Barents Sea or Norwegian Sea and non-reproductive due to low temperatures. The macro-zooplankton of the
fjord has been studied as a component in an ecosystem context since 2006, including baseline investigation
of distribution and functional performance of key species. In recent years, three additional krill species were regularly detected in the fjord and are the focus of an intensive long-term study. Of these species, Thysanoessa longicaudata (Kroeyer, 1846) and Meganyctiphanes norvegica (Sars, 1857) are typical for the boreal Atlantic whereas Nematoscelis megalops (Sars, 1883) has a broad distribution in temperate to subtropical provinces. Their occurrence in the Kongsfjorden clearly indicates increasing Atlantic influence. During the 2011 campaign, T. raschii was observed spawning in the field for the first time and showed development up to the naupliar stage in the laboratory. Should more evidence of reproduction be encountered in any of the five krill species in the Kongsfjorden in the future, it will be taken as an indication of a changing environment concerning temperature and food web composition
On the timing of moulting processes in reproductively active Northern krill Meganyctiphanes norvegica
The interactions between moult phasing, growth and environmental cues in Northern krill (Meganyctiphanes norvegica) were examined through analysing populations at seasonal, weekly, and daily timescales. The analyses were carried out on resident populations of krill found in three different neritic locations that experience similar environmental signals (the Clyde Sea, Scotland; the Kattegat, Denmark; Gullmarsfjord, Sweden). Seasonal analyses were carried out on the Clyde Sea population and showed that moulting frequency increased significantly moving from winter to summer. The proportion of moulting females in summer samples was often more than double the proportion of moulting males, suggesting that females had a comparatively shorter intermoult period (IMP). Weekly samples taken from the Kattegat showed a similar pattern. However, although the difference between the proportion of female and male moulters was significant in one week, it was not another, mainly because of the variability in the proportion of female moulters. Such variability in females was equally evident in the daily samples taken at Gullmarsfjord. It suggests that females have a shorter IMP (12.5 days) than males (18.4 days) and are more likely to moult in synchrony. Nevertheless, the daily samples revealed that males are also capable of moult synchronisation, although less frequently than females. Shortened IMPs in females were not a result of the abbreviation of specific moult stages. Accordingly, reproductive activity did not alter the course of the normal moult cycle. There was no significant difference between the total body lengths of males and females indicating that females achieve the same levels of growth despite moulting more frequently and having to provision the energy-rich ovaries. This is in contrast to most other crustaceans where the energy costs of reproduction reduce female growth. The fact that females were less abundant than males, probably by suffering a greater level of mortality, suggests that different behavioural strategies, particularly vertical migration regimes, were adopted by each sex to maximise growth and reproduction
The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective
A major aim of this review is to determine
which physiological functions are adopted by adults and
larvae to survive the winter season with low food supply
and their relative importance. A second aim is to clarify the
extent to which seasonal variation in larval and adult krill
physiology is mediated by environmental factors with a
strong seasonality, such as food supply or day light. Experimental
studies on adult krill have demonstrated that speciWc
physiological adaptations during autumn and winter,
such as reduced metabolic rates and feeding activity, are
not caused simply by the scarcity of food, as was previously
assumed. These adaptations appear to be inXuenced
by the local light regime. The physiological functions that
larval krill adopt during winter (reduced metabolism,
delayed development, lipid utilisation, and variable growth
rates) are, in contrast to the adults, under direct control by
the available food supply. During winter, the adults often
seem to have little association with sea ice (at least until
early spring). The larvae, however, feed within sea ice but
mainly on the grazers of the ice algal community rather
than on the algae themselves. In this respect, a miss-match
in timing of the occurrence of the last phytoplankton
blooms in autumn and the start of the sea ice formation, as
has been increasingly observed in the west Antarctic Peninsula
(WAP) region, will impact larval krill development
during winter in terms of food supply and consequently the
krill stock in this region