3,532 research outputs found
On Properties of the Isoscalar Giant Dipole Resonance
Main properties (strength function, energy-dependent transition density,
branching ratios for direct nucleon decay) of the isoscalar giant dipole
resonance in several medium-heavy mass spherical nuclei are described within a
continuum-RPA approach, taking into account the smearing effect. All model
parameters used in the calculations are taken from independent data.
Calculation results are compared with available experimental data.Comment: 12 pages, 2 figure
Inviting end-of-life talk in initial CALM therapy sessions: A conversation analytic study
OBJECTIVE: To examine how end-of-life talk is initiated in CALM therapy sessions with advanced cancer patients. METHODS: Conversation analysis was used to systematically examine the sequences where talk about death was raised in the first sessions of ten patients. RESULTS: Open questions about the patients' experiences, feelings or understanding in the context of talk about their troubles, were found to regularly elicit talk concerning end-of-life. These questions were designed in ways that invite patients to discuss troubling aspects of their cancer journey, without making discussion of this topic an interactional requirement. That is, the interactional work required to not engage in such talk is minimised. This choice is provided through the open question design, the degree to which negative feeling descriptors are specified, and the sequential context of the question. CONCLUSION: The analysis shows that therapists provide patients with the opportunity to talk about end-of-life in a way that is supportive of the therapeutic relationship. The readiness of patients to engage in end-of-life talk displays the salience of this topic, as well as the reflective space provided by CALM therapy. PRACTICE IMPLICATIONS: The results provide important insight into the process of CALM therapy, which can be used to guide training
Evaluation of the mean intensity of the P-odd mixing of nuclear compound states
A temperature version of the shell-optical-model approach for describing the
low-energy compound-to-compound transitions induced by external single-particle
fields is given. The approach is applied to evaluate the mean intensity of the
P-odd mixing of nuclear compound states. Unified description for the mixing and
electromagnetic transitions allows one to evaluate the mean intensity without
the use of free parameters. The valence-mechanism contribution to the mentioned
intensity is also evaluated. Calculation results are compared with the data
deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page
Numerical studies of variable-range hopping in one-dimensional systems
Hopping transport in a one-dimensional system is studied numerically. A fast
algorithm is devised to find the lowest-resistance path at arbitrary electric
field. Probability distribution functions of individual resistances on the path
and the net resistance are calculated and fitted to compact analytic formulas.
Qualitative differences between statistics of resistance fluctuations in Ohmic
and non-Ohmic regimes are elucidated. The results are compared with prior
theoretical and experimental work on the subject.Comment: 12 pages, 12 figures. Published versio
Pulsar timing analysis in the presence of correlated noise
Pulsar timing observations are usually analysed with least-square-fitting
procedures under the assumption that the timing residuals are uncorrelated
(statistically "white"). Pulsar observers are well aware that this assumption
often breaks down and causes severe errors in estimating the parameters of the
timing model and their uncertainties. Ad hoc methods for minimizing these
errors have been developed, but we show that they are far from optimal.
Compensation for temporal correlation can be done optimally if the covariance
matrix of the residuals is known using a linear transformation that whitens
both the residuals and the timing model. We adopt a transformation based on the
Cholesky decomposition of the covariance matrix, but the transformation is not
unique. We show how to estimate the covariance matrix with sufficient accuracy
to optimize the pulsar timing analysis. We also show how to apply this
procedure to estimate the spectrum of any time series with a steep red
power-law spectrum, including those with irregular sampling and variable error
bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA
An analysis of the timing irregularities for 366 pulsars
We provide an analysis of timing irregularities observed for 366 pulsars.
Observations were obtained using the 76-m Lovell radio telescope at the Jodrell
Bank Observatory over the past 36 years. These data sets have allowed us to
carry out the first large-scale analysis of pulsar timing noise over time
scales of > 10yr, with multiple observing frequencies and for a large sample of
pulsars. Our sample includes both normal and recycled pulsars. The timing
residuals for the pulsars with the smallest characteristic ages are shown to be
dominated by the recovery from glitch events, whereas the timing irregularities
seen for older pulsars are quasi-periodic. We emphasise that previous models
that explained timing residuals as a low-frequency noise process are not
consistent with observation.Comment: Accepted by MNRAS. High resolution images available from the article
on AD
The gamma-ray telescope Gamma-1
French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented
Tunneling-assisted impact ionization fronts in semiconductors
We propose a novel type of ionization front in layered semiconductor
structures. The propagation is due to the interplay of band-to-band tunneling
and impact ionization. Our numerical simulations show that the front can be
triggered when an extremely sharp voltage ramp () is
applied in reverse direction to a Si structure that is connected in
series with an external load. The triggering occurs after a delay of 0.7 to 0.8
ns. The maximal electrical field at the front edge exceeds .
The front velocity is 40 times faster than the saturated drift velocity
. The front passes through the base with a thickness of
within approximately 30 ps, filling it with dense electron-hole plasma. This
passage is accompanied by a voltage drop from 8 kV to dozens of volts. In this
way a voltage pulse with a ramp up to can be applied to the
load. The possibility to form a kilovolt pulse with such a voltage rise rate
sets new frontiers in pulse power electronics.Comment: 12 pages, 6 figure
The Effect of the Pairing Interaction on the Energies of Isobar Analog Resonances in Sb and Isospin Admixture in Sn Isotopes
In the present study, the effect of the pairing interaction and the isovector
correlation between nucleons on the properties of the isobar analog resonances
(IAR) in Sb isotopes and the isospin admixture in Sn
isotopes is investigated within the framework of the quasiparticle random phase
approximation (QRPA). The form of the interaction strength parameter is related
to the shell model potential by restoring the isotopic invariance of the
nuclear part of the total Hamiltonian. In this respect, the isospin admixtures
in the Sn isotopes are calculated, and the dependence of the
differential cross section and the volume integral for the
Sn(He,t)Sb reactions at E(He) MeV occurring by the excitation
of IAR on mass number A is examined. Our results show that the calculated value
for the isospin mixing in the Sn isotope is in good agreement with Colo
et al.'s estimates , and the obtained values for the volume integral
change within the error range of the value reported by Fujiwara et al.
(535 MeV fm). Moreover, it is concluded that although the
differential cross section of the isobar analog resonance for the (He,t)
reactions is not sensitive to pairing correlations between nucleons, a
considerable effect on the isospin admixtures in isotopes can be
seen with the presence of these correlations.Comment: 16 pages, 5 EPS figures and 2 tables, Late
- …
