17,609 research outputs found
Children's working understanding of the knowledge gained from seeing and feeling
In three Experiments, (N = 48 3- to 4-year olds; 100 3- to 5-year olds; 54 4-yearolds), children who could see or feel a target toy, recognized when they had sufficient information to answer “Which one is it?” and when they needed additional access. They were weaker at taking the informative modality of access when the choice was between
seeing more of a partially visible toy and feeling it; at doing so when the target was completely hidden; and at reporting seeing or feeling as their source of knowledge of the target’s identity having experienced both. Working understanding of the knowledge gained from seeing and feeling (identifying the target efficiently) was not necessarily in advance of explicit understanding (reporting the informative source)
Information Security as Strategic (In)effectivity
Security of information flow is commonly understood as preventing any
information leakage, regardless of how grave or harmless consequences the
leakage can have. In this work, we suggest that information security is not a
goal in itself, but rather a means of preventing potential attackers from
compromising the correct behavior of the system. To formalize this, we first
show how two information flows can be compared by looking at the adversary's
ability to harm the system. Then, we propose that the information flow in a
system is effectively information-secure if it does not allow for more harm
than its idealized variant based on the classical notion of noninterference
Low energy neutron propagation in MCNPX and GEANT4
Simulations of neutron background from rock for underground experiments are
presented. Neutron propagation through two types of rock, lead and hydrocarbon
material is discussed. The results show a reasonably good agreement between
GEANT4, MCNPX and GEANT3 in transporting low-energy neutrons.Comment: 9 Figure
Starbursts and the triggering of the activity in nearby powerful radio galaxies
We present high quality long-slit spectra for three nearby powerful radio
galaxies 3C293, 3C305, PKS1345+12. These were taken with the aim of
characterising the young stellar populations (YSP), and thereby investigating
the evolution of the host galaxies, as well as the events that triggered the
activity. Isochrone spectral synthesis modelling of the wide wavelength
coverage spectra of nuclear and off-nuclear continuum-emitting regions have
been used to estimate the ages, masses and luminosities of the YSP component,
taking full account of reddening effects and potential contamination by
activity-related components. We find that the YSP make a substantial
contribution to the continuum flux in the off-nuclear regions on a radial scale
of 1 - 20kpc in all three objects. Moreover, in two objects we find evidence
for reddened post-starburst stellar populations in the near-nuclear regions of
the host galaxies. The YSP are relatively old (0.1- 2Gyr), massive and make up
a large proportion (~1 - 50%) of the total stellar mass in the regions of
galaxies sampled by the observations. Overall, these results are consistent
with the idea that AGN activity in some radio galaxies is triggered by major
gas-rich mergers. Therefore, these radio galaxies form part of the subset of
early-type galaxies that is evolving most rapidly in the local universe.
Intriguingly, the results also suggest that the radio jets are triggered
relatively late in the merger sequence, and that there is an evolutionary link
between radio galaxies and luminous/ultra-luminous infrared galaxies.Comment: 17 pages, 13 figures, accepted for publication in MNRA
The use of the Rx spin label in orientation measurement on proteins, by EPR
M.A.S. & J.E.M. would like to acknowledge funding from the EPSRC as part of the iMR-CDT. The Authors would like to acknowledge funding from The MRC UK, Grant G1100021, EPSRC Basic Technology EP/F039034/1, and from the Wellcome Trust 099149/Z/12/Z.The bipedal spin label Rx is more restricted in its conformation and dynamics than its monopodal counterpart R1. To systematically investigate the utility of the Rx label, we have attempted to comprehensively survey the attachment of Rx to protein secondary structures. We have examined the formation, structure and dynamics of the spin label in relation to the underlying protein in order to determine feasibility and optimum conditions for distance and orientation measurement by pulsed EPR. The labeled proteins have been studied using molecular dynamics, CW EPR, pulsed EPR distance measurement at X-band and orientation measurement at W-band. The utility of different modes and positions of attachment have been compared and contrasted.Publisher PDFPeer reviewe
Is there Evidence for Flat Cores in the Halos of Dwarf Galaxies?: The Case of NGC 3109 and NGC 6822
Two well studied dwarf galaxies -- NGC 3109 and NGC 6822 -- present some of
the strongest observational support for a flat core at the center of galactic
dark matter (DM) halos. We use detailed cosmologically motivated numerical
models to investigate the systematics and the accuracy of recovering parameters
of the galaxies. Some of our models match the observed structure of the two
galaxies remarkably well. Our analysis shows that the rotation curves of these
two galaxies are instead quite compatible with their DM halos having steep
cuspy density profiles. The rotation curves in our models are measured using
standard observational techniques. The models reproduce the rotation curves of
both galaxies, the disk surface brightness profiles as well as the profile of
isophotal ellipticity and position angle. The models are centrally dominated by
baryons; however, the dark matter component is globally dominant. The simulated
disk mass is marginally consistent with a stellar mass-to-light ratio in
agreement with the observed colors. We show that non-circular motions combined
with gas pressure support and projection effects results in a large
underestimation of the circular velocity in the central kpc region,
creating the illusion of a constant density core. Although the systematic
effects mentioned above are stronger in barred systems, they are also present
in axisymetric disks. Our results strongly suggest that there is no
contradiction between the observed rotation curves in dwarf galaxies and the
cuspy central dark matter density profiles predicted by Cold Dark Matter
models.Comment: Accepted for publication in the ApJ. New discussion, figures and one
appendix. High resolution version
at:http://www.astro.washington.edu/octavio/N3109_paper.ps.g
9.7 um Silicate Features in AGNs: New Insights into Unification Models
We describe observations of 9.7 um silicate features in 97 AGNs, exhibiting a
wide range of AGN types and of X-ray extinction toward the central nuclei. We
find that the strength of the silicate feature correlates with the HI column
density estimated from fitting the X-ray data, such that low HI columns
correspond to silicate emission while high columns correspond to silicate
absorption. The behavior is generally consistent with unification models where
the large diversity in AGN properties is caused by viewing-angle-dependent
obscuration of the nucleus. Radio-loud AGNs and radio-quiet quasars follow
roughly the correlation between HI columns and the strength of the silicate
feature defined by Seyfert galaxies. The agreement among AGN types suggests a
high-level unification with similar characteristics for the structure of the
obscuring material. We demonstrate the implications for unification models
qualitatively with a conceptual disk model. The model includes an inner
accretion disk (< 0.1 pc in radius), a middle disk (0.1-10 pc in radius) with a
dense diffuse component and with embedded denser clouds, and an outer clumpy
disk (10-300 pc in radius).Comment: Accepted for publication in ApJ, 14 pages, 5 figures. The on-line
table is available at http://cztsy.as.arizona.edu/~yong/silicate_tab1.pd
Morphological studies of the Spitzer Wide-Area Infrared Extragalactic survey galaxy population in the UGC 10214 Hubble space telescope/advanced camera for surveys field
We present the results of a morphological analysis of a small subset of the Spitzer Wide-Area Infrared Extragalactic survey (SWIRE) galaxy population. The analysis is based on public Advanced Camera for Surveys (ACS) data taken inside the SWIRE N1 field, which are the deepest optical high-resolution imaging available within the SWIRE fields as of today. Our reference sample includes 156 galaxies detected by both ACS and SWIRE. Among the various galaxy morphologies, we disentangle two main classes, spheroids (or bulge-dominated galaxies) and disc-dominated ones, for which we compute the number counts as a function of flux. We then limit our sample to objects with Infrared Array Camera (IRAC) fluxes brighter than 10 μJy, estimated ~90 per cent completeness limit of the SWIRE catalogues, and compare the observed counts to model predictions. We find that the observed counts of the spheroidal population agree with the expectations of a hierarchical model while a monolithic scenario predicts steeper counts. Both scenarios, however, underpredict the number of late-type galaxies. These observations show that the large majority (close to 80 per cent) of the 3.6- and 4.5-μm galaxy population, even at these moderately faint fluxes, is dominated by spiral and irregular galaxies or mergers
- …
