26 research outputs found

    Monoaminergic modulation of photoreception in ascidian:evidence for a proto-hypothalamo-retinal territory

    Get PDF
    Background : The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods : The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results : We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion : We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina

    New Mediterranean biodiversity records (October, 2014)

    Get PDF
    The Collective Article 'New Mediterranean Biodiversity Records' of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonikos Gulf, Greece); the red alga Grateloupia turuturu (along the Israeli Mediterranean shore); the mantis shrimp Clorida albolitura (Gulf of Antalya, Turkey); the mud crab Dyspanopeus sayi (Mar Piccolo of Taranto, Ionian Sea); the blue crab Callinectes sapidus (Chios Island, Greece); the isopod Paracerceis sculpta (northern Aegean Sea, Greece); the sea urchin Diadema setosum (Gökova Bay, Turkey); the molluscs Smaragdia souverbiana, Murex forskoehlii, Fusinus verrucosus, Circenita callipyga, and Aplysia dactylomela (Syria); the cephalaspidean mollusc Haminoea cyanomarginata (Baia di Puolo, Massa Lubrense, Campania, southern Italy); the topmouth gudgeon Pseudorasbora parva (Civitavecchia, Tyrrhenian Sea); the fangtooth moray Enchelycore anatina (Plemmirio marine reserve, Sicily); the silver-cheeked toadfish Lagocephalus sceleratus (Saros Bay, Turkey; and Ibiza channel, Spain); the Indo-Pacific ascidian Herdmania momus in Kastelorizo Island (Greece); and the foraminiferal Clavulina multicamerata (Saronikos Gulf, Greece). The record of L. sceleratus in Spain consists the deepest (350-400m depth) record of the species in the Mediterranean Sea. The new records of native species include: first record of the ctenophore Cestum veneris in Turkish marine waters; the presence of Holothuria tubulosa and Holothuria polii in the Bay of Igoumenitsa (Greece); the first recorded sighting of the bull ray Pteromylaeus bovinus in Maltese waters; and a new record of the fish Lobotes surinamensis from Maliakos Gulf.peer-reviewe

    Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis

    Get PDF
    During the development of the central nervous system (CNS), combinations of transcription factors and signalling molecules orchestrate patterning, specification and differentiation of neural cell types. In vertebrates, three types of melanin-containing pigment cells, exert a variety of functional roles including visual perception. Here we analysed the mechanisms underlying pigment cell specification within the CNS of a simple chordate, the ascidian Ciona intestinalis. Ciona tadpole larvae exhibit a basic chordate body plan characterized by a small number of neural cells. We employed lineage-specific transcription profiling to characterize the expression of genes downstream of fibroblast growth factor signalling, which govern pigment cell formation. We demonstrate that FGF signalling sequentially imposes a pigment cell identity at the expense of anterior neural fates. We identify FGF-dependent and pigment cell-specific factors, including the small GTPase, Rab32/38 and demonstrated its requirement for the pigmentation of larval sensory organs

    Unpublished Mediterranean records of marine alien and cryptogenic species

    Get PDF
    Good datasets of geo-referenced records of alien species are a prerequisite for assessing the spatio-temporal dynamics of biological invasions, their invasive potential, and the magnitude of their impacts. However, with the exception of first records on a country level or wider regions, observations of species presence tend to remain unpublished, buried in scattered repositories or in the personal databases of experts. Through an initiative to collect, harmonize and make such unpublished data for marine alien and cryptogenic species in the Mediterranean Sea available, a large dataset comprising 5376 records was created. It includes records of 239 alien or cryptogenic taxa (192 Animalia, 24 Plantae, 23 Chromista) from 19 countries surrounding the Mediterranean Sea. In terms of records, the most reported Phyla in descending order were Chordata, Mollusca, Chlorophyta, Arthropoda, and Rhodophyta. The most recorded species was Caulerpa cylindracea, followed by Siganus luridus, Magallana sp. (cf. gigas or angulata) and Pterois miles. The dataset includes records from 1972 to 2020, with the highest number of records observed in 2018. Among the records of the dataset, Dictyota acutiloba is a first record for the Mediterranean Sea. Nine first country records are also included: the alga Caulerpa taxifolia var. distichophylla, the cube boxfish Ostracion cubicus, and the cleaner shrimp Urocaridella pulchella from Israel; the sponge Paraleucilla magna from Libya and Slovenia; the lumpfish Cyclopterus lumpus from Cyprus; the bryozoan Celleporaria vermiformis and the polychaetes Prionospio depauperata and Notomastus aberans from Malta

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Tort Liability - Charitable Institutions

    Get PDF

    Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory

    No full text
    Abstract Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina.</p
    corecore