2,386 research outputs found

     Power to the Workers? A qualitative study of workers' experiences of a 4-day working week

    Get PDF
    The pandemic has resulted in seismic shifts to all aspects of our lives, including views concerning the organisation of work. One impact is the acceleration of workers questioning traditional life stages, of work then retirement, and what they want out of life (Cable & Gratton, 2022) As quality of life is acknowledged as a driving force for many employees leaving their current jobs (Fuller & Kerr, 2022), the implications of a four-day working week are currently being investigated (Miller, 2022). Drawing on a small-scale study at an automotive supplier, based in the North-East of England, this case study will present findings from qualitative interviews conducted with employees who are experiencing a newly established 4-day working week. From the findings presented, discussions will highlight implications of this shift in the organisation of the working week for employees across the organisation. It is intended that the findings and discussions will raise relevant, contemporary questions for the business community more generally

    Stacking-induced fluorescence increase reveals allosteric interactions through DNA

    Get PDF
    From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye–DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids

    MTDC systems for frequency support base on DC voltage manipulation

    Get PDF
    This paper presents control strategies for multi-terminal HVDC systems to provide primary frequency support to connected AC networks via coordinated DC voltage manipulation. Inertia response from DC connected large offshore wind farms can also be incorporated without telecommunication based on the detection of DC voltage derivation. Simulation studies ba sed on a 3-terminal HVDC system connecting one large wind farm and two separate AC networks validate the operation of the system during frequency events

    Radiating Bondi and Cooling Site Flows

    Full text link
    Steady accretion of a radiating gas onto a central mass point is described and compared to classic Bondi accretion. Radiation losses are essential for accretion flows to be observed. Unlike Bondi flows, radiating Bondi flows pass through a sonic point at a finite radius and become supersonic near the center. The morphology of all radiating Bondi flows is described by a single dimensionless parameter. In radiating Bondi flows the mass accretion rate varies approximately as the first power of the central mass -- this differs significantly from the quadratic dependence on the central mass in classical Bondi flows. Mass accretion rates onto galaxy or cluster-centered black holes estimated from traditional and radiating Bondi flows are significantly different. In radiating Bondi flows the gas temperature increases at large radii, as in the cores of many galaxy groups and clusters, allowing radiating Bondi flows to merge naturally with gas arriving from their cluster environments. Some radiating flows cool completely before reaching the center of the flow, and this also occurs in cooling site flows in which there is no central gravitating mass.Comment: 9 pages with 3 figures; accepted by Ap

    Frequency support using multi-terminal HVDC systems based on DC voltage manipulation

    Get PDF
    This paper investigates the use of multi-terminal HVDC systems to provide primary frequency support to connected AC networks via coordinated DC voltage manipulation. Control schemes for multi-terminal HVDC systems to allow redistribution of active power, based on the idea of “power priority” are proposed. Inertia response from DC connected large offshore wind farms can also be incorporated based on the detection of DC voltage derivation at the offshore converter terminal without the need for telecommunication between the DC terminals. Simulation studies based on a three - terminal HVDC system connecting one large wind farm and two separate AC networks validate the operation of the system during frequency events

    Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry

    Get PDF
    Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively-charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild-type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts

    The second US Naval Observatory CCD Astrograph Catalog (UCAC2)

    Full text link
    The second USNO CCD Astrograph Catalog, UCAC2 was released in July 2003. Positions and proper motions for 48,330,571 sources (mostly stars) are available on 3 CDs, supplemented with 2MASS photometry for 99.5% of the sources. The catalog covers the sky area from -90 to +40 degrees declination, going up to +52 in some areas; this completely supersedes the UCAC1 released in 2001. Current epoch positions are obtained from observations with the USNO 8-inch Twin Astrograph equipped with a 4k CCD camera. The precision of the positions are 15 to 70 mas, depending on magnitude, with estimated systematic errors of 10 mas or below. Proper motions are derived by utilizing over 140 ground-and space-based catalogs, including Hipparcos/Tycho, the AC2000.2, as well as yet unpublished re-measures of the AGK2 plates and scans from the NPM and SPM plates. Proper motion errors are about 1 to 3 mas/yr for stars to 12th magnitude, and about 4 to 7 mas/yr for fainter stars to 16th magnitude. The observational data, astrometric reductions, results, and important information for the users of this catalog are presented.Comment: accepted by AJ, AAS LaTeX, 14 figures, 10 table
    • …
    corecore