278 research outputs found

    A mathematical calcium-induced calcium-release model

    Get PDF
    Calcium plays a key role in neurons in the regulation of subcellular processes and links the electrophysiological scale with biochemical processes taking place in the cell. In this paper we present a mathematical model for neuronal calcium induced calcium release (CICR), taking into account synaptic calcium uptake through the plasma membrane, the cytosol and its interaction with the endoplasmic reticulum through channels called Inositol-3-phosphate (IP3) and Ryanodine Receptors (RYR) that are embedded in the endoplasmic membrane. For this model study we defined a two-dimensional model environment that represents a neuronal spine including the components mentioned above. A reaction-diffusion process is coupled with a transport term on the endoplasmic membrane to regulate endoplasmic calcium sequestration and release. The model was implemented in the simulation environment UG and employs finite-volume discretization together with multigrid solvers for the numerical solution of the underlying problem. This study shows that, depending on the behavior of the endoplasmic reticulum, calcium signals are fairly restricted to the spinal area or can extend further into the dendritic branches. Furthermore we observe signal transduction faster than by passive diffusion, giving rise to the hypothesis that, under certain cytosolic-endoplasmic configurations, CICR-signals can travel faster than by passive calcium diffusion

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure

    Nonexponetial relaxation of photoinduced conductance in organic field effect transistor

    Get PDF
    We report detailed studies of the slow relaxation of the photoinduced excess charge carriers in organic metal-insulator-semiconductor field effect transistors consisting of poly(3-hexylthiophene) as the active layer. The relaxation process cannot be physically explained by processes, which lead to a simple or a stretched-exponential decay behavior. Models based on serial relaxation dynamics due to a hierarchy of systems with increasing spatial separation of the photo-generated negative and positive charges are used to explain the results. In order to explain the observed trend, the model is further modified by introducing a gate voltage dependent coulombic distribution manifested by the trapped negative charge carriers.Comment: 17 pages, 3 Figure

    Probing the potential landscape inside a two-dimensional electron-gas

    Full text link
    We report direct observations of the scattering potentials in a two-dimensional electron-gas using electron-beam diffaction-experiments. The diffracting objects are local density-fluctuations caused by the spatial and charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures. The scatterers can be manipulated externally by sample illumination, or by cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure

    Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    Get PDF
    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I�, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead

    Soluble receptor for advanced glycation end products in COPD: relationship with emphysema and chronic cor pulmonale: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The receptor for advanced glycation end products (RAGE) is a multiligand signal transduction receptor that can initiate and perpetuate inflammation. Its soluble isoform (sRAGE) acts as a decoy receptor for RAGE ligands, and is thought to afford protection against inflammation. With the present study, we aimed at determining whether circulating sRAGE is correlated with emphysema and chronic cor pulmonale in chronic obstructive pulmonary disease (COPD).</p> <p>Methods</p> <p>In 200 COPD patients and 201 age- and sex-matched controls, we measured lung function by spirometry, and sRAGE by ELISA method. We also measured the plasma levels of two RAGE ligands, N-epsilon-carboxymethyl lysine and S100A12, by ELISA method. In the COPD patients, we assessed the prevalence and severity of emphysema by computed tomography (CT), and the prevalence of chronic cor pulmonale by echocardiography. Multiple quantile regression was used to assess the effects of emphysema, chronic cor pulmonale, smoking history, and comorbid conditions on the three quartiles of sRAGE.</p> <p>Results</p> <p>sRAGE was significantly lower (p = 0.007) in COPD patients (median 652 pg/mL, interquartile range 484 to 1076 pg/mL) than in controls (median 869 pg/mL, interquartile range 601 to 1240 pg/mL), and was correlated with the severity of emphysema (p < 0.001), the lower the level of sRAGE the greater the degree of emphysema on CT. The relationship remained statistically significant after adjusting for smoking history and comorbid conditions. In addition, sRAGE was significantly lower in COPD patients with chronic cor pulmonale than in those without (p = 0.002). Such difference remained statistically significant after adjusting for smoking history, comorbidities, and emphysema severity. There was no significant difference in the plasma levels of the two RAGE ligands between cases and controls.</p> <p>Conclusions</p> <p>sRAGE is significantly lower in patients with COPD than in age- and sex-matched individuals without airflow obstruction. Emphysema and chronic cor pulmonale are independent predictors of reduced sRAGE in COPD.</p

    Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation.</p> <p>Methods</p> <p>Rats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot.</p> <p>Results</p> <p>AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFβ1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues.</p> <p>Conclusion</p> <p>These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling.</p

    Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to assess the between-day reliability of the electromechanical delay (EMD) of selected neck muscles during the performance of maximal isometric contractions in five different directions.</p> <p>Methods</p> <p>Twenty-one physically active males participated in two testing sessions separated by seven to eight days. Using a custom-made fixed frame dynamometer, cervical force and surface electromyography (EMG) were recorded bilaterally from the splenius capitis, upper trapezius and sternocleidomastoid muscles during the performance of efforts in extension, flexion, left and right lateral bending, and protraction. The EMD was extracted using the Teager-Kaiser Energy Operator. Reliability indices calculated for each muscle in each testing direction were: the difference in scores between the two testing sessions and corresponding 95% confidence intervals, the standard error of measurement (SEM) and intra-class correlation coefficients (ICC).</p> <p>Results</p> <p>EMD values showed no evidence of systematic difference between the two testing sessions across all muscles and testing directions. The SEM for extension, flexion and lateral bending efforts ranged between 2.5 ms to 4.8 ms, indicating a good level of measurement precision. For protraction, SEM values were higher and considered to be imprecise for research and clinical purposes. ICC values for all muscles across all testing directions ranged from 0.23 to 0.79.</p> <p>Conclusion</p> <p>EMD of selected neck muscles can be measured with sufficient precision for the assessment of neck muscle function in an athletic population in the majority of directions tested.</p
    corecore