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Summary. — Calcium plays a key role in neurons in the regulation of subcellular
processes and links the electrophysiological scale with biochemical processes taking
place in the cell. In this paper we present a mathematical model for neuronal cal-
cium induced calcium release (CICR), taking into account synaptic calcium uptake
through the plasma membrane, the cytosol and its interaction with the endoplasmic
reticulum through channels called Inositol-3-phosphate (IP3) and Ryanodine Recep-
tors (RYR) that are embedded in the endoplasmic membrane. For this model study
we defined a two-dimensional model environment that represents a neuronal spine
including the components mentioned above. A reaction-diffusion process is cou-
pled with a transport term on the endoplasmic membrane to regulate endoplasmic
calcium sequestration and release. The model was implemented in the simulation
environment UG and employs finite-volume discretization together with multigrid
solvers for the numerical solution of the underlying problem. This study shows
that, depending on the behavior of the endoplasmic reticulum, calcium signals are
fairly restricted to the spinal area or can extend further into the dendritic branches.
Furthermore we observe signal transduction faster than by passive diffusion, giv-
ing rise to the hypothesis that, under certain cytosolic-endoplasmic configurations,
CICR-signals can travel faster than by passive calcium diffusion.

PACS 87.19.ll – Models of single neurons and networks.
PACS 87.19.ls – Encoding, decoding, and transformation.
PACS 87.19.lv – Learning and memory.
PACS 87.85.dm – Physical models of neurophysiological processes.

1. – Introduction

A neuron operates on two separate time scales. On the electrophysiological level, the
cell receives and propagates electrical signals along its plasma membrane. The interplay
between neighboring cells and networks are regulated by different types of coupling, such
as chemical or electrical synapses. Furthermore each neuron, on an independent scale,
is responsible for transforming its electrical activity into a subcellular response, which is
relevant for learning and survival of the cell [1-3].
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Calcium plays a key role as a signal encoder in neurons [4-8]. A finely tuned sys-
tem of calcium-regulated processes, sensitive to calcium concentration levels, duration
and frequency of calcium signals as well as entry-sites for calcium, operates within cyto-
plasm and interacts with the endoplasmic reticulum (ER) [9-13]. The neuron’s nucleus
finally receives these cytoplasmic calcium signals through its nuclear pores [14], and ac-
tivates calcium-regulated biochemical cascades which result in the expression of specific
genes [4, 6, 15,16].

Great effort has been undertaken in the last decades to develop experimental tools
and mathematical models to investigate signal processing along the plasma membrane
of cells. Recent work has advanced common one-dimensional models based on the
cable equation [17, 18], by combining Hodgkin-Huxley like equations with a passive
three-dimensional (3D) model [19].

In addition to the electrophysiological signaling scale, a model for nuclear calcium
signaling on reconstructed nuclear morphologies has shed more light on calcium signal-
ing in the nucleus, the site for survival-relevant biochemical processes [20]. Here, we
propose a mathematical model that links both models accounting for the electrical signal
transduction on the plasma membrane [19] and the nuclear calcium code [20].

In this model we focus on three calcium regulating components: uptake of intra-
cellular calcium through synaptic activity, buffering of calcium in the cytosol and the
sequestration/release of calcium through the ER. Calcium entry into the cell is regulated
by depolarization of the plasma membrane [21-25]. Therefore the uptake of calcium is
defined by the 3D model of active signal processing mentioned above [19]. In the cy-
toplasm buffers are present that inactivate free calcium [26-29]. Calcium in the cytosol
propagates by a gradient-driven diffusion process (and is damped by buffers), we there-
fore propose diffusion-reaction equations for cytosolic calcium. The ER is included in
the model based on the neuron-within-neuron proposition in ref. [30]. Depending on its
state the ER functions as a source or sink. Having set up these calcium induced calcium
release (CICR) dynamics [9, 31-33], which induce calcium signals that propagate to the
nucleus, we are able to connect two very important signaling scales. The proposed model
can be applied in areas involving the ER-dynamics, such as Alzheimer’s disease, where
the sequestration and release of calcium from ER-stores are strongly affected [34].

A numerical treatment of the model with a finite-volume discretization approach
and numerical solvers based on the multigrid theory, all implemented in the simulation
platform UG [35, 36], allows for two- or three-dimensional simulations which can be
defined on reconstructed morphologies as presented in refs. [37, 19].

2. – The neuronal CICR model

Cellular Calcium Signals are delicately regulated by different factors, such as entry
sites, channel gates, cytosolic buffers and the interaction with the endoplasmic reticulum.
The model presented here is meant to link activity on the plasma membrane (and the re-
lated calcium entry at synaptic sites) with nuclear calcium. For the model we consider a
domain sketched in fig. 1. The plasma membrane of the cell defines the outer boundary of
the exterior domain, the cytosol, which surrounds the endoplasmic reticulum (ER). The
ER-membrane continuously extends into the outer of the two nuclear membranes. The
nucleus can communicate with the cytosol directly through its nuclear pore complexes
in a passive manner [14]. The ER contains active transporter complexes, most impor-
tantly Inositol-3-phosphate (IP3) [38-41], and Ryanodine receptors (RYR) [32, 42-45].
Through these transporters the ER can actively sequester calcium from the cytosol or
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Fig. 1. – Sketch of the model neuron: The neuron consists of the components plasma membrane,
cytosol, endoplasmic reticulum, and nucleus. Interaction between the cytosol and endoplasmic
reticulum takes place through the endoplasmic membrane-interface in which biological recep-
tors are integrated. The nucleus is directly connected with the cytosol, not the endoplasmic
reticulum, through its nuclear pore complexes.

release calcium back into the cytosol. Both IP3 and RYR are triggered by calcium ions,
therefore the process under investigation can be described as calcium induced calcium
release (CICR).

In this section we will address the two domains, cytosol and ER, and their coupling by
IP3 and RYR. Thus, the presented model describes active calcium signaling originating
at the plasma membrane (Model 2 [19], fig. 1), propagating through cytosol and ER
down to the soma and into the nucleus (Model 1 [20], fig. 1). First we will introduce
the equations in cytosol and ER separately and then focus on their coupling by the
ER-membrane.

2.1. Cytosolic calcium. – As mentioned earlier, cytosolic calcium propagates through a
passive diffusion process, dampened by cytosolic calcium buffers. We assume these buffers
to be stationary, and thus model them by a reaction term that inactivates calcium ions.
This yields

(1)
∂Ccyt

∂t
= div(Dcyt · ∇Ccyt) + κBC · (Ccyt − C0

cyt),

Ccyt being the cytosolic calcium concentration, C0
cyt the initial cytosolic calcium con-

centration, Dcyt the cytosolic calcium diffusion coefficient and κBC the buffering rate
for cytosolic calcium. If we consider Dcyt as concentration-independent, then eq. (1) is
linear and one can rescale the equation additively to resting state zero. Furthermore
one can consider base-level cytosolic calcium at a zero-state from a biological stand-
point. Therefore, if in future models we consider eq. (1) as non-linear, the assumption of
zero-initial condition still holds. Boundary conditions for calcium at the plasma mem-
brane’s non-entry sites are considered as Neumann Zero, since the focus here lies in the
sequestration effects of the ER, not the calcium uptake by the extracellular space. We
set time-dependent Dirichlet-conditions at the calcium entry sites, such as synapses. As
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initial conditions for the basal calcium level we can, from a biological standpoint, assume
homogeneous distribution of calcium in the cytosol and set Ccyt|t=0 ≡ C0

cyt = 0. This
defines an initial-boundary value problem of the following type:

∂Ccyt

∂t
= div(Dcyt · ∇Ccyt) + κBC · (Ccyt − C0

cyt), in Ωcyt(2)

Ccyt|t=0 ≡ C0
cyt = 0, in Ω̄cyt(3)

∂Ccyt

∂�n
= 0, on Γ(1)

cyt(4)

Ccyt = g(t), on Γ(2)
cyt,(5)

where Ωcyt denotes the cytosolic interior, Ω̄cyt the cytosol including the plasma mem-
brane, Γ(1)

cyt the plasma membrane parts with no calcium uptake and Γ(2)
cyt the calcium

gating sites on the membrane, e.g., synaptic sites. Since calcium, that is gated through
plasma membrane channels (e.g., N-methyl-D-aspartate (NMDA) receptors), can be mea-
sured experimentally space- and time-dependently, this data can be used to define space-
and time-dependent sources for calcium on the plasma membrane. This justifies the
definition of Dirichlet boundary conditions for the plasma membrane.

2.2. Endoplasmic sequestration and release. – The ER functions as a store for calcium
that, depending on its state, will sequester cytosolic calcium or release a significant
amount of calcium into the cytosol in order to “refuel” the cytosolic calcium transient
towards the nucleus. Uptake of calcium into distinct ER-stores can be described by a
diffusive flux coupled with directed flux into or out of the store driven by a potential
gradient. We denote this behavior by

(6)
∂CER

∂t
= div(DER∇CER) + div(f(CER, t)�v · CER), in ΩER,

where CER denotes the endoplasmic calcium concentration, DER the diffusion coefficient,
f(CER, t) a function that controls ER behavior, i.e. sequestration or release, that stands
in relation to a potential gradient −∇Φ = div(f · �v), �v a directed velocity towards local
CER-stores and ΩER the endoplasmic interior.

The ER-membrane containing IP3 and RYR is considered as an inner boundary cou-
pling the two domains Ωcyt and ΩER. Cytosolic calcium near the membrane is channeled
actively by IP3 and RYR into ER-calcium stores. Active transport of calcium across the
membrane is numerically treated by integrative terms across membrane-near areas which
function as sinks on the one side and sources on the other. Finally we can present the
following system:

∂Ccyt

∂t
= div(Dcyt · ∇Ccyt) + κBC · (Ccyt − C0

cyt), in Ωcyt(7)

Ccyt|t=0 = 0, in Ω̄cyt(8)
∂Ccyt

∂�n
= 0, on Γ(1)

cyt(9)

Ccyt = g(t), on Γ(2)
cyt,(10)
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Fig. 2. – Omega domains: in the model defined ωx-domains can be set, which define the transport
of calcium from ωcyt into ωER and vice versa.

∂CER

∂t
= div(DER∇CER) + div(f(CER, t)�v · CER), in ΩER,(11)

CER|t=0 = C0
ER, in ΩER(12) ∫

ωcyt

Ccyt =
∫

ωER

CER, in ωcyt ∪ ωER(13)

where ωcyt and ωER denote the membrane transport areas, depicted in fig. 2, which can
be defined according to the underlying biological system. The Cytosol-ER interface is
a biologically active (ATP consuming) membrane. The model assumption therefore is
that cytosolic calcium close to the membrane is transported to membrane-near areas
within the ER. This accounts for the integral equality in eq. (13). In addition, since
we are focussing on a small spinal area with its ER and experimental data to define f
in eq. (11) has yet to be produced, we simplify the right-hand side of eq. (11) by the
contraint given in eq. (13).

2.3. Solving the equations numerically . – Solving the above model numerically, inde-
pendent of space dimensionality and neuronal morphology, we make use of finite-volume
space discretization and multigrid solving techniques on a test morphology depicted in
fig. 3 [35]. The numerical implementation of the model is realized within the simulation
environment UG [36], where we can make direct use of multigrid solvers. For the sake
of clearly demonstrating these techniques applied to a PDE-based model, we consider a
simplified version of the above model and focus on the diffusive component of eq. (7).

Fig. 3. – Computational domain. Left and middle: simulation domains for cytosolic calcium and
ER-calcium, respectively. Right: coarse grid for finite-volume discretization of the underlying
PDEs. In the multigrid method this grid functions as the coarsest grid on which a hierarchy of
refined, interleaving grids is computed.
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The weak approximation yields

(14)
∫

Ωcyt

∂Ccyt

∂t
=

∫
Ωcyt

div(Dcyt · ∇Ccyt).

Applying Gauss’ theorem we retrieve

(15)
∂

∂t

∫
Ωcyt

Ccyt =
∫

Γ
(1)∪(2)
cyt

Dcyt · ∇u · �n.

The finite-volume discretization defines a dual grid Bi =
⋃

i bi such that

(16)
∫

Γ
(1)∪(2)
cyt

Dcyt · ∇u · �n =
m∑

i=1

∫
∂bi

Dcyt · ∇u · �n.

Applying implicit time stepping, the discrete equation—which defines the system of
equations to be solved—leaves us with

∫
bi

Ccyt(tk+1, xi)dx −
∫

bi

Ccyt(tk, xi)dx =(17)

Δt

∫
∂bi

∑
j

Ccyt(tk+1, xj)Dcyt∇ξj(γ)�nidγ,

where ξj are defined numerical ansatzfunctions for a surface area γ. Applying this dis-
cretization scheme to the entire set of equations, we retrieve a full numerical implemen-
tation, applicable to 2D or 3D domains, as well as random neuronal, ER- and nuclear
morphologies (which can be reconstructed from microscopy data using the methods pre-
sented in ref. [37]).

3. – Results

As stated earlier, one of the ERs very important functions is calcium sequestration
and release as a form of cellular memory. In this section we will apply the CICR model to
the spine-area of fig. 1, which is shown in fig. 3. The computational domain and example
calcium entry time courses are shown in figs. 4 and 5. The top segment of the plasma
membrane is defined as a synaptic site, the spherical part in the center will serve as the
ER, and at the same time is a local calcium store. Therefore ωcyt is defined by the inner
ring and ωER = ΩER in this study. Simulations show calcium release from a local source,
i.e. a synapse, diffusion and sequestration/release from the ER. Endoplasmic behavior is
a concentration regulated process. Therefore calcium is stored in the ER until a certain
threshold is reached, then is freed into the cytoplasm until the ER is depleted to a lower
concentration threshold. All following evaluations are measurements carried out in the
spinal neck.
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Fig. 4. – Simulation time course of cytsolic calcium: on the very top, a calcium source is defined
by synaptic test pulses (fig. 5). Calcium then diffuses in the cytosol and is simultaneously
sequestered or released from the ER (ER concentration changes not depicted).

3.1. Calcium signaling is regulated by the ER. – If the ER acts as a strong calcium sink,
fig. 6, signals originating in dendritic spines are strongly confined to the spinal area. We
compare ER sequestration under different settings (i.e. application of test pulses, see fig. 5
and different thresholds) depicted in fig. 7, with calcium signal propagation without any
ER influence. A strong shift in concentration levels shows that without ER interaction,
calcium waves spill into the dendrites for a more global influence of synaptic activity.

Furthermore, the activity of the ER locally increases or decreases calcium concen-
tration levels. In fig. 7 sequestration and release is regulated by the ERs concentration
levels, and the rate of ER calcium release can be varied (see different time courses for
calcium signals). Instead of a diffusive increase of calcium concentration in the spine
neck, we observe local maxima which reflect the state of the ER due to synaptic activity.
Therefore the ER can serve as a “memory-storage” for past synaptic events that affected
the concentration level of the ER.

3.2. ER dynamics enhance signal propagation speed . – In ref. [46] an electrotonic model
for communication between spines and nucleus, based on the idea that the ER-membrane
acts as a passive signal transmitter, is proposed. Reason was that certain biological
phenomena occur on a time scale that should exclude mere “diffusion-communication”.
The model proposed here is based on the cytosolic and ER-calcium interaction through
IP3 and RYR, which is present in neuronal systems. This type of signaling in our
model shows, that indeed the speed of signal propagation lies above the speed of calcium
diffusion due to local calcium uptake at the ER membrane, fig. 7. Therefore the neuronal
calcium signaling system might be optimized in such a way that the ER uptake of calcium
strongly affects signaling speed between spinal dendritic sites and the cell’s nucleus.
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Fig. 5. – Synaptic test pulses: depending on the action potential dynamics in the neuron calcium
enters the cell through the synaptic membrane channels. In our test environment we defined to
simple pulses to demonstrate the cellular calcium dynamics. a) Test pulse 1. b) Test pulse 2.
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Fig. 6. – ER sequestration and release dynamics: a) ER test release-threshold set to 1.4 and
1.0, respectively, and combined with test pulse 1. b) Release-threshold set to 1.4 and combined
with test pulse 2.
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Fig. 7. – Time courses of cytosolic calcium: calcium is evaluated at the spine neck in all simula-
tion runs. a) Depending on ER behavior and test pulse, the course of cytosolic calcium reacts
to both these parameters. If the ER sequestration and release is completely inactive, we observe
typical diffusion curves. b) In early ER release stages, the calcium signal propagates faster that
in mere diffusion processes. This can be observed by the left-shift of the concentration time
course.
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4. – Discussion

The subcellular answer to synaptic activity triggered by action potentials is domi-
nantly encoded in calcium waves. The propagation of calcium through the cell connects
the synaptic activity with the cell nucleus where DNA is transcribed into specific genes.
This communication pathway is regulated by the cytosolic and endoplasmic interaction
through IP3 and ryanodine receptors.

In this paper we propose a mathematical model based on density-defined partial
differential equations that take into account the cytosolic space and the endoplasmic
reticulum as a calcium sink or source. The mathematical theory used in this model is
highly independent of the imposed computational domain morphology and can easily be
applied to three-dimensional geometries, although for a model study and proof of concept
we restricted ourselves to two-dimensional testgeometries.

This model completes the gap between two models, one for the investigation of nu-
clear calcium signaling and one for three-dimensional signal propagation on the neuronal
plasma membrane, and therefore links the electrophysiological scale with the subcellular
signaling scale involved in learning, development and survival. We have taken into ac-
count the biological phenomenon of calcium-induced calcium release (CICR) which plays
an important role in subcellular signaling.

From the proposed model we can investigate the effect of the ER on local calcium
signals where it functions as an integrator of repetitive stimuli. Therefore the ER can
store information of previous synaptic events, and can relay this information, encoded in
the calcium release dynamics, to the nucleus. Furthermore, we see that the ER produces
super-diffusion speeds which might account for fast communication between synapse and
nucleus. These propositions will further be investigated in a three-dimensional setting
and can include reconstructed cellular morphologies from microscopy data. The model
presented here can eventually bring new insight into the physical properties of neurons
and their components dendrites, soma and axon. Due to the combination of continuum
mechanics theory and its implementation into state-of-the-art numerical methods for
solving large systems of equations resulting from partial differential equations, we present
a way to advance research in an interdisciplinary context.
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