834 research outputs found

    Inconstant Planck's constant

    Full text link
    Motivated by the Dirac idea that fundamental constant are dynamical variables and by conjectures on quantum structure of spacetime at small distances, we consider the possibility that Planck constant ℏ\hbar is a time depending quantity, undergoing random gaussian fluctuations around its measured constant mean value, with variance σ2\sigma^2 and a typical correlation timescale Δt\Delta t. We consider the case of propagation of a free particle and a one--dimensional harmonic oscillator coherent state, and show that the time evolution in both cases is different from the standard behaviour. Finally, we discuss how interferometric experiments or exploiting coherent electromagnetic fields in a cavity may put effective bounds on the value of τ=σ2Δt\tau= \sigma^2 \Delta t.Comment: To appear on the International Journal of Modern Physics

    Experimental pre-assessing entanglement in Gaussian states mixing

    Full text link
    We suggest and demonstrate a method to assess entanglement generation schemes based on mixing of Gaussian states at a beam splitter (BS). Our method is based on the fidelity criterion and represents a tool to analyze the effect of losses and noise before the BS in both symmetric and asymmetric channels with and without thermal effects. More generally, our scheme allows one to pre-assess entanglement resources and to optimize the design of BS-based schemes for the generation of continuous variable entanglement.Comment: 10 pages, 15 figure

    On the behavior in time of solutions to motion of Non-Newtonian fluids

    Get PDF
    We study the behavior on time of weak solutions to the non-stationary motion of an incompressible fluid with shear rate dependent viscosity in bounded domains when the initial velocity u∈ L2. Our estimates show the different behavior of the solution as the growth condition of the stress tensor varies. In the “dilatant” or “shear thickening” case we prove that the decay rate does not depend on u, then our estimates also apply for irregular initial velocity

    Transmittivity measurements by means of squeezed vacuum light

    Full text link
    A method for measuring the transmittivity of optical samples by using squeezed--vacuum radiation is illustrated. A squeezed vacuum field generated by a below--threshold optical parametric oscillator is propagated through a nondispersive medium and detected by a homodyne apparatus. The variance of the detected quadrature is used for measuring the transmittivity. With this method it is drastically reduced the number of photons passing through the sample during the measurement interval. The results of some tests are reported.Comment: 14 pages, 8 figure

    Tunable non-Gaussian resources for continuous-variable quantum technologies

    Full text link
    We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.Comment: 13 pages, 7 figure

    Palliative sedation in patients with advanced cancer followed at home: a prospective study.

    Get PDF
    Abstract CONTEXT: Home care programs in Italy. OBJECTIVES: The aim of this study was to assess a protocol for palliative sedation (PS) performed at home. METHODS: A total of 219 patients were prospectively assessed to evaluate a PS protocol in patients with advanced cancer followed at home by two home care programs with different territorial facilities. The protocol was based on stepwise administration of midazolam. RESULTS: A total of 176 of the patients died at home, and PS was performed in 24 of these patients (13.6%). Younger patients received the procedure more frequently than older patients (P=0.012). The principal reasons to start PS were agitated delirium (n=20) and dyspnea (n=4). Mean duration of PS was 42.2±30.4 hours, and the mean doses of midazolam were 23-58 mg/day. Both the home care team and the patients' relatives expressed optimal or good levels of satisfaction with the procedure in all but one case, respectively. CONCLUSION: This protocol for PS was feasible and effective in minimizing distress for a subgroup of patients who died at home. The characteristics of patients who may be effectively sedated at home should be better explored in future studies

    Full characterization of Gaussian bipartite entangled states by a single homodyne detector

    Full text link
    We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.Comment: 4 pages, 3 figures, slightly longer version of published PR
    • 

    corecore