22 research outputs found

    The combined action of the intracellular regions regulates FGFR2 kinase activity

    Get PDF
    Receptor tyrosine kinases (RTKs) are typically activated through a precise sequence of intracellular phosphorylation events starting with a tyrosine residue on the activation loop (A-loop) of the kinase domain (KD). From this point the mono-phosphorylated enzyme is active, but subject to stringent regulatory mechanisms which can vary dramatically across the different RTKs. In the absence of extracellular stimulation, fibroblast growth factor receptor 2 (FGFR2) exists in the mono-phosphorylated state in which catalytic activity is regulated to allow rapid response upon ligand binding, whilst restricting ligand-independent activation. Failure of this regulation is responsible for pathologic outcomes including cancer. Here we reveal the molecular mechanistic detail of KD control based on combinatorial interactions of the juxtamembrane (JM) and the C-terminal tail (CT) regions of the receptor. JM stabilizes the asymmetric dimeric KD required for substrate phosphorylation, whilst CT binding opposes dimerization, and down-regulates activity. Direct binding between JM and CT delays the recruitment of downstream effector proteins adding a further control step as the receptor proceeds to full activation. Our findings underscore the diversity in mechanisms of RTK oligomerisation and activation

    Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    Get PDF
    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins

    Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2.

    No full text
    Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies

    The Human Orphan Nuclear Receptor Tailless (TLX, NR2E1) Is Druggable

    No full text
    <div><p>Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.</p></div

    Sequence alignment of TLX LBD with COUP-TFII, RXRα and PNR LBDs.

    No full text
    <p>The nomenclature of the helices and β-sheet is indicated. Predicted residues belonging to the LBP are indicated by pink stars. Residues involved in the binding of TLX corepressors are highlighted in yellow. An exposed cysteine C338 is highlighted in green.</p

    Results of direct binding assays for ccrp1, ccrp2 and ccrp3 on the TLX LBD using the Octet RED 384 instrument.

    No full text
    <p>A, B, C. Those panels represent the plotted steady-state response levels and the fitted binding isotherms. The purified TLX protein was immobilized onto the surfaces of Super-Streptavidin biosensors. Solutions of compounds ccrp1 (panel A), ccrp2 (panel B), ccrp3 (panel C) at 0.4–100 µM concentrations were tested against immobilized TLX LBD and reference surfaces composed of blocked biotinylated Streptavidin.</p
    corecore