134 research outputs found

    Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery?

    Get PDF
    Patient-specific computational fluid dynamics is a powerful tool for investigating the hemodynamic risk in coronary arteries. Proper setting of flow boundary conditions in computational hemodynamic models of coronary arteries is one of the sources of uncertainty weakening the findings of in silico experiments, in consequence of the challenging task of obtaining in vivo 3D flow measurements within the clinical framework. Accordingly, in this study we evaluated the influence of assumptions on inflow velocity profile shape on coronary artery hemodynamics. To do that, (1) ten left anterior descending coronary artery (LAD) geometries were reconstructed from clinical angiography, and (2) eleven velocity profiles with realistic 3D features such as eccentricity and differently shaped (single- and double-vortex) secondary flows were generated analytically and imposed as inflow boundary conditions. Wall shear stress and helicity-based descriptors obtained prescribing the commonly used parabolic velocity profile were compared with those obtained with the other velocity profiles. Our findings indicated that the imposition of idealized velocity profiles as inflow boundary condition is acceptable as long the results of the proximal vessel segment are not considered, in LAD coronary arteries. As a pragmatic rule of thumb, a conservative estimation of the length of influence of the shape of the inflow velocity profile on LAD local hemodynamics can be given by the theoretical entrance length for cylindrical conduits in laminar flow conditions

    Economic impact of remote monitoring on ordinary follow-up of implantable cardioverter defibrillators as compared with conventional in-hospital visits: a single-center prospective and randomized study

    Get PDF
    Few data are available on actual follow-up costs of remote monitoring (RM) of implantable defibrillators (ICD). Our study aimed at assessing current direct costs of 1-year ICD follow-up based on RM compared with conventional quarterly in-hospital follow-ups. Methods and results Patients (N=233) with indications for ICD were consecutively recruited and randomized at implant to be followed up for 1 year with standard quarterly inhospital visits or by RM with one in-hospital visit at 12 months, unless additional in-hospital visits were required due to specific patient conditions or RM alarms. Costs were calculated distinguishing between provider and patient costs, excluding RM device and service cost. The frequency of scheduled in-hospital visits was lower in the RM group than in the control arm. Follow-up required 47 min per patient/year in the RM arm versus 86 min in the control arm (p=0.03) for involved physicians, generating cost estimates for the provider of USD 45 and USD 83 per patient/- year, respectively. Costs for nurses were comparable. Overall, the costs associated with RM and standard follow-up were USD 103±27 and 154±21 per patient/year, respectively (p=0.01). RM was cost-saving for the patients: USD 97±121 per patient/year in the RM group versus 287± 160 per patient/year (p=0.0001). Conclusion The time spent by the hospital staff was significantly reduced in the RM group. If the costs for the device and service are not charged to patients or the provider, patients could save about USD 190 per patient/year while the hospital could save USD 51 per patient/year

    Postural counseling represents a novel option in pain management of fibromyalgia patients

    Get PDF
    Background: Chronic pain is a key symptom in fibromyalgia (FM), and its management is still challenging for rheumatologists in daily practice. FM patients show psychological and psychiatric manifestations, going from mood and emotional disorders to depression and alexithymia that negatively impact their quality of life, limiting their daily activities. Since pharmacological strategies have a limited efficacy in FM pain, alternative or complementary non-pharmacological approaches have been introduced in the clinical management of FM. Patients and methods: This is a retrospective study on FM patients (n=52) treated with a novel integrated postural counseling (PC) rehabilitation program carried out by a counselor physiotherapist. The clinical impact of PC was evaluated by 1) a semi-structured interview using an ad hoc modified questionnaire McGill Illness Narrative Interview (MINI) 1 to obtain data on pain management by highlighting everyday experience of living with pain and 2) an FM impact questionnaire (FIQ) total score. Results: Two main structures of narrative emplotment of FM illness were recognized: 1) the cumulative life narrative structure (46.15%) and 2) the broken life (53.85%) narrative structure. Baseline FIQ score was 77.38±7.77, and it was significantly reduced after PC to 39.12±13.27 (P<0.0001). Although well-being still requires further definition as outcome in pain management, it is important for FM patients, dealing with pain-related sensations, thoughts and feelings and limiting their daily activities. In our study, 87.5% of interviewed FM patients reported an improvement in their well-being after PC. Conclusion: Our data suggest that an integrated PC program positively impacts chronic pain and fatigue based on self-management strategies. PC allows FM patients to resume their own life and regenerate their own image. Finally, we propose the introduction of the evaluation of the ability to resume daily activities as the target of rehabilitation programs in FM

    Entanglement Dynamics after a Quench in Ising Field Theory: A Branch Point Twist Field Approach

    Get PDF
    We extend the branch point twist field approach for the calculation of entanglement entropies to time-dependent problems in 1+1-dimensional massive quantum field theories. We focus on the simplest example: a mass quench in the Ising field theory from initial mass m0 to final mass m. The main analytical results are obtained from a perturbative expansion of the twist field one-point function in the post-quench quasi-particle basis. The expected linear growth of the Rényi entropies at large times mt ≫ 1 emerges from a perturbative calculation at second order. We also show that the Rényi and von Neumann entropies, in infinite volume, contain subleading oscillatory contributions of frequency 2m and amplitude proportional to (mt)−3/2. The oscillatory terms are correctly predicted by an alternative perturbation series, in the pre-quench quasi-particle basis, which we also discuss. A comparison to lattice numerical calculations carried out on an Ising chain in the scaling limit shows very good agreement with the quantum field theory predictions. We also find evidence of clustering of twist field correlators which implies that the entanglement entropies are proportional to the number of subsystem boundary points

    From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains

    Get PDF
    We consider the computation of the Loschmidt echo after quantum quenches in the interacting XXZ Heisenberg spin chain both for real and imaginary times. We study two-site product initial states, focusing in particular on the N\ue9el and tilted N\ue9el states. We apply the Quantum Transfer Matrix (QTM) approach to derive generalized TBA equations, which follow from the fusion hierarchy of the appropriate QTM's. Our formulas are valid for arbitrary imaginary time and for real times at least up to a time t0, after which the integral equations have to be modified. In some regimes, t0 is seen to be either very large or infinite, allowing to explore in detail the post-quench dynamics of the system. As an important part of our work, we show that for the N\ue9el state our imaginary time results can be recovered by means of the quench action approach, unveiling a direct connection with the quantum transfer matrix formalism. In particular, we show that in the zero-time limit, the study of our TBA equations allows for a simple alternative derivation of the recently obtained Bethe ansatz distribution functions for the N\ue9el, tilted N\ue9el and tilted ferromagnet states

    Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms

    Get PDF
    Stratifying prognosis following coronary bifurcation percutaneous coronary intervention (PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML) algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification model built on clinical, anatomical, and procedural features to predict all-cause mortality following contemporary bifurcation PCI. Multiple ML models to predict all-cause mortality were tested on a cohort of 2393 patients (training, n = 1795; internal validation, n = 598) undergoing bifurcation PCI with contemporary stents from the real-world RAIN registry. Twenty-five commonly available patient-/lesion-related features were selected to train ML models. The best model was validated in an external cohort of 1701 patients undergoing bifurcation PCI from the DUTCH PEERS and BIO-RESORT trial cohorts. At ROC curves, the AUC for the prediction of 2-year mortality was 0.79 (0.74–0.83) in the overall population, 0.74 (0.62–0.85) at internal validation and 0.71 (0.62–0.79) at external validation. Performance at risk ranking analysis, k-center cross-validation, and continual learning confirmed the generalizability of the models, also available as an online interface. The RAIN-ML prediction model represents the first tool combining clinical, anatomical, and procedural features to predict all-cause mortality among patients undergoing contemporary bifurcation PCI with reliable performance
    • …
    corecore